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FOREWORD 

This report was prepared under NASA Contract NAS 8-11494 and is 
one of a series intended to illustrate.methods used for the design and analysis 
of space vehicle flight control systems. Below is a complete list of the reports 
in the series: 

Volume I 
Volume II 
Volume III 
Volume IV 
Volume V 
Volume VI 
Volume VII 
Volume VIII 
Volume IX 
Volume X 
Volume XI 
Volume XII 
Volume XIII 
Volume XIV 
Volume XV 
Volume XVI 

Short Period Dynamics 
Trajectory Equations 
Linear Systems 
Nonlinear Systems 
Sensitivity Theory 
Stochastic Effects 
Attitude Control During Launch 
Rendezvous and Docking 
Optimization Methods 
Man in the Loop 
Component Dynamics 
Attitude Control in Space 
Adaptive Control 
Load Relief 
Elastic Body Equations 
Abort 

The work was conducted under the direction of Clyde D. Baker, 
Billy G. Davis and Fred W. Swift, Aero-Astro Dynamics Laboratory, George 
C. Marshall Space Flight Center. The General Dynamics Convair program was 
conducted under the direction of Arthur L. Greensite. 
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1. STATEMENT OF THE PROBLEM 

The elements of linear control theory are well established, and systematic re- 
sentations of fundamental aspects are available in a multitude of standard texts. P l-3) 

The appearance of yet another exposition on the subject, therefore, requires some 
justification. In keeping with the general theme of this series of monographs, the 
overall aim is to exhibit the specialized methods developed, within the framework of 
the general theory, to highlight specific aspects of the space vehicle control problem. 
The emphasis is on systematic and efficient exploitation of standard techniques, to- 
gether with interpretation of results, heavily oriented for space vehicle application. 
In short, this monograph is a distillation of the experience, know-how, and short cuts 
obtained by aerospace control engineers in dealing with the autopilot design of space 
vehicles. 

The other major objective of this monograph is to summarize recent developments 
in the general theory, as well as various refinements in standard methods. In the 
latter category are included such topics as analytic root loci and generalized Nyquist 
criteria. Among the newer developments are the Invariance Principle and the concepts 
of controllability and observability. 

The methods developed for the analysis of feedback control systems have tradi- 
tionally emphasized frequency response. This is no doubt because communication and 
electronics engineers were prominent in the early stages of development of the theory. 
However, in recent years, time-domain methods have emerged as the most natural 
means of dealing with such topics as optimal and adaptive control. As a result, these 
techniques have been accorded a high degree of refinement, and a detailed presentation 
of their results is given here. 

Because numbers of one kind or another are ultimately required in design analysis, 
the computational aspects of various methods are discussed where appropriate. 

This monograph is not concerned with fundamentals except as it tends to supple- 
ment or expand the material contained in standard texts. It is assumed that the 
reader is familiar with the basic elements of linear control theory of the kind usually 
contained in an introductory course. 





2. STATE OF THE ART 

The basic theory of linear systems goes back to Newton and includes many refine- 
ments and extensions (Laplace transforms, linear operators) developed over the years. 
In the period following World War II, the rapid development of the theory of automatic 
control (feedback principle) led to the need for special methods specifically suited for 
linear feedback control systems. There emerged the frequency-response techniques 
(Nyquist, Bode) and root locus (Evans). These permitted a rapid and efficient analysis 
of what might be called “conventional” control systems. Multiple-loop, high-order 
systems presented extreme difficulties for “paper-and-pencil” analysis. The advent of 
the modern high-speed digital computer has, for the most part, eliminated this problem, 
and the design of linear automatic control systems has become virtually routine. Con- 
sequently, research studies in recent years have been in the areas of nonlinear, 
adaptive, and optimal control. However, the well has not run dry in linear theory. 
New ideas do appear. 

A case in point is the theory of observability and controllability. One important 
result of this theory is a new insight into the relationship between transfer functions 
and the state-variable representation. This has clarified the phenomenon of “hidden 
oscillations” as well as the conditions under which a conventional transfer function is 
an accurate representation of a given dynamic system. The theory is perhaps most 
powerful when applied to multivariable (i.e. , multiple-input/multiple-output) systems. 
There are many instances in the literature where the neglect of this idea has led to 
erroneous results. 

Another-recent development of some importance is the Principle of Invariance, 
whose basic ideas have been extensively advanced by the Russians. Here, the funda- 
mental idea, while simple and elegant, encounters severe difficulties in practical 
application. However, the basic approach is novel and will no doubt prove useful in 
the design of control systems as current obstacles are progressively resolved. 

Various refinements in such standard tools as root-locus and frequency-response 
methods appear periodically. Many of these are discussed in this monograph, espe- 
cially if they are potentially useful in launch vehicle control systems. 

This exposition also takes into account the marked trend in recent years toward 
the state-variable method of analysis. This method is considered here in some detail 
for the stationary case, since at present this is the only type for which the compu- 
tational aspects are not overwhelming. 

An extensive list of references that the reader may consult for greater detail in 
the topics discussed is provided at the end of this monograph. 
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3. RECOMMENDED PROCEDURES 

Since most results relating to the analysis of linear constant coefficient control 
systems are well established and are described in many elementary textbooks, this 
exposition will confine itself to: 

a. Giving brief but precise statements of the main results. 

b. Discussing, in greater detail, recent extensions and developments. 

C. Emphasizing the special features of the theory that are especially useful in 
aerospace applications. 

d. Providing a detailed account of various topics that are given cursory or ambiguous 
treatment in standard texts. 

In Sec. 3.1, the fundamental techniques for the analysis of linear continuous sys- 
tems are summarized. These are discussed in their order of chronological develop- 
ment, beginning with the classical methods of determining whether the characteristic 
equation for a given system contains roots with positive real parts. This is followed 
by a discussion of the frequency-response methods due to Bode and Nyquist, which 
permit a more complete determination of the response properties in terms of frequency, 
relative damping, etc. Since this method is one of the most widely used at the present 
time, the treatment is somewhat more detailed, and applications to aerospace systems 
are discussed. Finally, the prominent facets of the root-locus method are considered, 
with special emphasis on the qualitative features of the system response (transient and 
steady-state) that are obtainable by this method. 

Finally, the recent developments for the stability analysis of systems expressed in 
the state variable format are summarized. 

All the above methods deal with what is essentially the same problem; namely, how 
to determine the response properties of a linear system in some efficient and enlighten- 
ing manner. The crudest are the classical methods (Routh-Hurwitz), since the only 
information obtainable is whether the system is stable or unstable. The frequency- 
response method, as the name implies, yields results (in terms of a frequency-magni- 
tude plot) on how fast the system responds to various command signals (and distur- 
bances), together with indications of how quickly the transient motions die out. The 
method is especially adapted for application to feedback-type systems. 

The special virtue of root locus is that the transient and the steady-state properties 
of the system are simultaneously available. 

In the final sections, two recent theoretical developments that enhance the use of 
the above methods are discussed. The concepts of obserability and controllability (due 
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to Kalman) help clarify the relationship between a system expressed in state-variable 
form and a system expressed in transfer-function form. This is especially useful in 
analyzing multivariable systems. 

The Invariance Principle, discussed in Sec. 3.6, is a novel method for rendering 
a system insensitive to extraneous disturbances. Various problems connected with 
its specific implementation to a launch vehicle autopilot are discussed. 

3.1 STABILITY ANALYSIS -- CONTINUOUS SYSTEMS 

The input-output relation for any linear system may be expressed in the form 

D 
n-k 

x(t) = y(t) (1) 
k=O 

di D1 G- 
dti 

where the ak are constants. The complete solution of this equation with y(t) identically 
zero is 

n 

x,(t) = C Ci e 
Xit 

i=l 

where Xi are the roots of the characteristic equation 

n 

c 
n-k 

k=O 
akX =0 

(2) 

(3) 

The complete solution of Eq. (1) when y(t) f 0 is given by 

x(t) = x,e) + x,(t) (4) 

where x2(t) is a particular solution of Eq. (1). These results are classical, and de- 
tails may be found in any standard text on differential equations. 

Although, in principle at least, linear systems may be solved in a straightforward 
manner, a multitude of highly specialized techniques have been developed to yield 
results more efficiently and for specific needs. Basically, these methods bypass the 
problem of solving Eq. (1) repetitively for each new set of system parameters, yield- 
ing instead such information as simple stability and relative stability, and dealing 
with such terms as damping, resonant frequency and gain, and phase margin. 
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In discussing these methods, we will at all times be mindful of the launch vehicle 
control problem. For this purpose, a fairly complete description of an attitude con- 
trol system is contained in Appendix A. This will be used repeatedly in examples 
serving the dual purpose of clarifying the topic under discussion and highlighting pro- 
minent facets of the attitude control system. 

3.1.1 Routh-Hurwitz Method 

Instead of a complete solution of Eq. (l), it is often necessary merely to know 
whether the solution is stable, This is assured if all the roots of the characteristic 
equation (3) have negative real parts. 

The classical Routh-Hurwitz criterion is contained in the following.(7’ 8, 

Theorem A: The roots of the n th degree polynomial equation with real coefficients 

f(A) = 2 akXnmk = 0 
k=O 

have negative real parts if, and only if, all the determinants 

Hk = 

al 

aO 
0 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
0 

a3 

a2 

al 

aO 
0 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
0 

a5 

“4 

a3 

a2 

al 

aO 
0 
. 
. . . 

0 

............ 
a2k-l 

............ 
a2k-2 

. . . . . . . . . . . . 
a2k-3 

. . . 

. . 

. . . 

. . . 

. 

. . . 

. . . . . . . . . . . . 

(5) 

(6) 
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are positive for k = 1,2,3,****,n. 

Any term al, whose subscript j > n, is set equal to zero. 

The following is a simple illustration of the method. 

Example 1: Consider the system characterized by the transfer function of Eq. (A23) 
with KI set equal to zero. According to (A26), the characteristic equation is given byt 

3 2 
8 +a s +a s+a 

1 2 3 = 0 

where 

al = Kc 

a2 =K K 
A cK&-‘or 

a3 = Kc VA PC - CCC~) 

Using the parameter values 

KA 
= 2.5 

Kc = 5 

‘k = 1 

PC = 2 

Pa = 1 

we find 

al = 5 

a2 = 24 

a3 
= 20 

Therefore, 

H1 = a1 = 5 

tit is immaterial whether we use s (the Laplace operator) or X, since for present 
purposes this is merely a dummy variable. 
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H = 2 
al 

aO 

a3 
= 100 

a2 

al 
H3= a0 

0 

a3 
0 

a2 
0 = 2000 

al a3 

Since all the Hk are positive, the characteristic equation has no roots with positive 
real parts, and the system is stable. 

Theorem A may be reformulated in a manner that does not require the evaluation 
of determinants. The essential result is contained in the following. 

Theorem B: Consider the polynomial equation 

f(X) = 2 akXnmk = 0 
k=O 

where the coefficients, ak, are all real. 

Form the array of numbers: 

a0 a2 a4 a6 . . . . . . . l . . . . 

al a3 a5 a7 ............ 

bl b 
2 

b3 ................. 

Cl c2 c3 ................. 

dl d2 ..................... 

el e2 ..................... 

fl ......................... 

where 

(7) 

bl = al a2 - ao a3 
, b2 = 

al “4 - ao a5 

al al 
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bla3 
-a b 1 2 

Cl = 
bl 

, 

c b 
dl = 

1 2-blC2 

c1 
, 

dlC2 
-c d 1 2 

el = 
dl ’ 

bla5 
-a b 1 3 

c2 = 
bl 

c b 
d2 = 1 3-blC3 

c1 

dlC3 -c d 1 3 
e2 = 

dl 

e d 
fl = 

1 2-dle2 

el 

etc. 

Notice that two terms in the first column are used in each calculation. As the 
term to be calculated shifts to the right, the additional two terms in the formula also 
shift to the right. The formula for calculation of terms in any given row uses only 
those terms in the two rows immediately above. The process is continued for (n+l) 
rows. 

The number of changes in sign of the terms in the first column of the above array 
is equal to the number of roots with positive real parts. 

Furthermore, if the ah are not all of the same sign, or if any ak is zero, then 
some roots are either pure imaginaries or else have positive real parts. 

It may happen that the first column term in any row is zero but the remaining 
terms in this row are not all zero. In this case, replace the zero term by an arbi- 
trarily small constant, Q , and proceed as usual. 

, 

If all the coefficients of any row are zero, this indicates a pair of complex roots 
with zero real part. 

The above results are classical and constitute the earliest attempts to study the 
stability of linear systems in some rational manner. In recent years, these criteria 
have been generalized in various ways. Perhaps the most significant is the extension 
of the method to determine “relative stability. ” In this case, one derives, on the 
coefficients, ah, conditions that ensure that all the roots of the characteristic equation 
lie to the left of the shaded lines shown in Fig. 1. 

10 



I -- 

0 

“1 = a+ jo 

0 =-c w 

Wd = a$ * ~ - rf e- 

@d 

Re 

Now any complex root pair may be, 
expressed as 

where w n represents an undamped 
natural frequency and cn is the re- 
lative damping factor. (See Fig. 1.) 
It is evident, therefore, that the locus 
of all roots having the same damping 
factor is two straight lines extending 
from the origin into the left-half plane 
and making equal angles with both 
halves of the imaginary axis. Accord- 
ing to Fig. 1, the relative damping 
factor defined by the shaded lines is 
given in terms of 8 by 

Figure 1. Region of Relative Stability 

where c M 
is the relative damping factor of a point lying on the shaded line. By 

substituting 

X = z e-j’ 

into Eq. (5)) we obtain the new polynomial 

(9) 

whose roots are identical to those of Eq. (5)) except that they are rotated counter- 
clockwise by 8 degrees. Consequently, any root of Eq. (5) that is located in the sector 
between the shaded line and the negative imaginary axis will appear as a root in the 
right-half plane of Eq. (10). The difficulty now is that the coefficients of Eq. (10) are 
(in general) complex. What is needed, therefore, is a “Routh-Hurwitz” type criterion 
that is valid for polynomials with complex coefficients. Various criteria of this type 
have indeed been developed, and the simplest, perhaps, is the Bilharz-Frank theorem 
given by Marden in the following form. 

Theorem C: Given the polynomial equation 

fl (z) = $ (4, + j Bk) zn-k = 0 
k=O 

(11) 
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where the Ak and Bk are real, with? 

A0 = 1 

0 ’ B. = , 

form the determinants 

Ak = 

A1 A3 As-•..AZkl 

1 A2 A4...‘AZk2 

0 . A1 A3....Aak3 
. 
. 1 . A2 . . . . : . 
. 
. 0 . . Al.. . .; 
. . 
. . 
. . 1 . . . . . 
. . . . 
. . 0 . . ..i 

0 6. . . . . . . ‘A, 

0 
B2 Bq l l l l B2k-2 

0 B1 B3 . . . .B 
-2k-3 . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. . 
l . . ..- 

. . 

. . 

. . . ..- 

. . 

. . 

. . 

. . 

0. . :. . :. . . . .B 
k 

-B 
2 -B4 l l l l 

-B1 
-B 

3 
0 . 
. 
. 
. 
. . 
. 
. 
. 
. 
. 
. 
. 
o-. . 

B . . . . 
2 

B . . . . 
1 

p . . . . 
. 
. 
. 
. 
. 
. 
. 

. . . . . . 

A 
1 A3- l l l 

1 
A2. l l l 

0 

. A1- l l l 
. 

. 1 . . . . 

. 

. 

. 
0 . . 

. . 

. . 

. . 

. . o- . . . . . . . . 

-B 2k-2 
-B 2k-3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

-Bk-l 
A 

2k-3 
A 

?k-4 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 

Ak-1 

where k = 1,2,3,-•-, n. 

The number of roots of Eq. (11) having positive real parts is equal to the number 
of changes of sign in the sequence, Al, A2, l l l l , An. 

Any term Ai or Bi whose subscript i > n is set equal to zero. 

When the Bk are all zero (i.e. , F(z) is a real polynomial), then A1 = H1 and Ak = 
Hk HkWl where Hk is the determinant defined by Eq. (6)) with a0 = 1. Then, since 
s@'l (A1 A,) = S@il A2, and S@ (AkAk+l) = S@ (BkS1 Bk+l) for k = 2,3, l - l , n-l, the 
theorem reduces to the conventional Routh-Hurwitz form. 

Where is obviously no loss of generality in assuming that the leading coefficient is 
unity. 
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The necessity of evaluating high-order determinants is often awkward, even 
though there are a large number of zero elements. An alternate approach that per- 
mits the use of the simplified criteria of Theorem B is the following. (lo) Substitute 

X = z eje 

into Eq. (5), yielding the polynomial 

n 

f2 (~1 = C \ e 
j(n-k)B n-k 

Z = 0 
k=O 

The roots of this polynomial are identical to those of Eq. (5)) except that they are 
rotated clockwise by 8 degrees. Forming the product 

f, (z) = fl (z) f2 (z) = 

(12) 

(13) 

n n 

=B= 

a a eW-8)8 z(2n-H) 

a=0 +-j Q! B 
(14) 

results in a new polynomial having the property that any complex root pair of Eq. (5) 
lying in the sector between the shaded lines and the imaginary axis now appears as a 
complex root pair in the right-half plane of Eq. (14). The coefficients of Eq. (14) are 
all real. In fact, for any specific pair of indices, 01 = p and /3 = q, we have a term of 
the form 

a a e-j(P-r)e ZPwW 
P q 

while for OL = q and 0 = p, the term appears as 

a a ej@-r)8 Z(Sn-P-r) 
P q 

Summing these last two yields a term of the form 

2 a a z(~~-~-~) cos (p - r)B 
P q 

Collecting coefficients of like powers of z results in the expression 

f, tz) = 2 bk z~-~ 
k=O 

(15) 
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The coefficients bk are evaluated below for polynomials in X ofupto the tenth 
order. 

b. = ai 

bl 
= 2 a0 alcOse 

b2 = a: +2 a6 a2 co8 2e 

b3 
= 2ala2c0se+2aoa3cos3e 

b4 = at +2a1a3c0s2e+2aoa4cos4e 

b5 
= 2 a2 a3 cos 8 +2 ala4 cos 39 +2 a0 a5 co8 58 

b6 = at +2a2a4cos2e+2ala5cos4e+2aoa6cos6e 

b7 
= 2a3a4c0se+2a2a5c0s3e+2ala6cos5e+2aoa7cos7e 

b8 = a: +2a3a5c0s2e+2a2a6~0s4e+2a1a7c0s6e+2a0a8c0s8e 

b9 
= 2a4a5c0se+2a3a6c0s3e+2a2a7cos5e+2ala8~~~7e 

+2 a0 a9 cos 98 

b 2 
10 = a5 +2a4a6C0s2e+2a3a7c0s4e+2a2a8c0s6e+2alagcos8e 

+2a a o locOsloe 

b = 11 2a5a6COse+2a4a7c0s3e+2a3a8cos5e+2a2ag~~s7e 

+2a a 1 10 98 ~0~ 

b 
2 

12 = a6 
+2a5a7~~s2e+2a4a8C0s4e+2a3agcos6e 

+2a a 2 1o cos 88 
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b 13 = 2a6a7c0s~+2a5a8cos3e+2a4agcos5e+2a3a10cos7e 

b 2 
14 = a7 +2a6a8cos28+2a5agc0s4e+2a a 4 10 cos Se 

b = 15 2a7a8c0se+2a6agc0s38+2a5a10cos5e 

b 16 =a: +2a7agcds2e+2a a cos 48 6 10 

b 17 = 2a8agc0s8+2a7a10c0s38 

b =a2 
18 9 + 2 a8 a10 cos 2e 

b 19 
=2a a 

9 10 
cos 8 

b 2 
20 = al0 

A simple application of these results is given below. 

Example 2: In Example 1 it was shown that the characteristic equation, 

s3 + 5 s2 + 24 s + 20 = 0 (a) 

has no roots in the right-half plane. We now seek to determine if there is any root 
having a relative damping factor less than 0.5. From Eq. (8)) we find that the sector 
under consideration is defined by 8 = 30’. 

The problem will be solved by direct application of Theorem C and also by the 
criteria of Theorem B , using Eq. (15). In the present case, the polynomial, fl(z), 
becomes 

fl (z) = e -3jez3+5e-2jez2+24e-jez+20 

= z3+5ejez2+24e2jez+20e3je 

= 2 (%-j Bk) z3-k = 0 
k=O 
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where 

A,, = 1 B6 = 0 

A1 = 4.33 B1 = 2.5 

A2 = 12 B2 = 20.78 

A3 = 0 B3 = 20 

The determinants, Ak, are 

4.33 0 

1 12 

A= 0 
3 4.33 

0 20.78 

0 2.5 

= -24, 994 

4.33 0 

A= 1 
2 12 

0 20.78 

= 18.02 

A 
1 

=A 
1 

= 4.33 

0 -20.78 0 

0 -2.5 -20 

0 0 -20.78 

0 4.33 0 

20 1 12 

-20.78 

-2.5 

4.33 

Since there is one change of sign in the sequence Al, A2, A3, theorem C indicates 
that Eq. (b) has one root in the right-half plane, which, in turn, means that Eq. (a) has 
a complex root pair whose relative damping factor is less then 0.6. 

To obtain the same result via another route, we calculate the bi of Eq. (15), using 
the ah coefficients of Eq. (a). The result is 

b6 
= 400 

b3 
= 208 

b5 = 831 
b2 

= 49 

b4 = 676 
bl = 8.66 
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b0 = 1 

The number array of theorem B becomes 

1 49 676 400 

8.66 208 831 

I 25 580 400 

7 692 

-1891 400 

692 

400 

There are two changes of sign in the first column, which indicates that the equation 

f, (z) = 5 bk 26-k = 0 
k=O 

has two roots in the right-half plane; therefore Eq. (a) has a complex root pair with a 
relative damping factor less than 0.5. 

3.1.2 Frequency Response 

The methods discussed in this section are concerned with determining the stability 
properties of the feedback system shown schematically in Fig. 2. The notation is the 
one most widely used in the control literature. 

. 

b KG(s) 

B(s) 

Figure 2. Schematic of Feedback Control System 
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R(s) = Laplace transform of the reference signal 

C(s) = Laplace transform of the controlled variable 

E(s) = Laplace transform of the error signal 

B(s) = Laplace transform of the feedback signal 

‘3s) = forward loop transfer function 

H(s) = feedback loop transfer function 

K = open-loop gain 

S = Laplace operator 

The following quantities are of fundamental importance. 

Closed-Loop Transfer Function: 

c(s)= K G(s) 
R(s) 1 + K G(s) H(s) 

Cnen-Loon Transfer Function: 

(16) 

B(s)= 
E(s) K G(s) H(s) (17) 

The open-loop transfer function may be expressed in either of the following two 
forms. 

B(s)= 
K iil (8 + ai) jgl 

-t 
SL + 2 Cj “1 S + O; 

E(s) r 
s+bi)Anl s2+25c5 s+w = ( 

2 
a 

(19) 

It will be shown later (Section 3.3.2) that Kn provides a measure of steady-state 
error. 
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Let us write Eq. (18) in the form 

B(s) = Kn A1 W 
E(s) sn A2 (8) 

(20) 

Then the equation of motion for the system, in Laplace transform notation, 
becomes 

sn A2 (s) + K, AI (s)] C(s) = K sn A2 (8) G(s) R(s) (21) 

The values of the roots of the characteristic equation 

sn A2 (8) + Kn A1 (s) = 0 (22) 

determine the stability of the system. If the system is to be stable, then Eq. (22) must 
not have any roots in the right-half s plane. 

The Nyquist stability criterion( 11) determines the number of roots of Eq. (22) in 
the right-half s plane from a frequency response plot of the open-loop transfer func- 
tion. Unlike the Routh test, the Nyquist method also yields information on “relative 
stability, ” which is important from a control point of view. This idea will be made 
precise later. 

The Nyquist criterion is classical. It is discussed in every standard text on con- 
trol theory. However, most authors, in an attempt to avoid the use of complex vari- 
ables, construct an awkward, burdensome, and sometimes questionable “proof” of the 
criterion, with the result that the reader is more often mystified than enlightened. 

Since the Nyquist criterion is basic in linear control theory and its derivation is 
simple and straightforward, it seems appropriate to develop it here. With this as a 
foundation, some of the more complicated Nyquist diagrams may be interpreted with 
ease and assurance. 

Let 

Dl@) 
Y(s) = - 

D2W (23) 

denote a rational function of s. In accordance with common usage, a root of Dl(s) is 
called a zero, while a root of D2(s) is called a pole of the function Y(s). 

19 



Draw the closed contour rl in the s plane such that it encloses all the poles and 
zeros of Y(s). Then there exists a closed curve, r2, in the Y plane which results 
from mapping each point of rl onto the Y plane. (See Fig. 3.) We say that a closed 
contour is described in a positive sense if the interior of the contour is always to the 
left as the point moves along the contour. 

If none of the poles or zeros lie on the contour, then, if the contour, rl, encloses 
in a positive sense Z zeros and P poles of Y(s) (this takes account of multiplicity of 
poles and zeros), the corresponding contour, r2, in the Y plane encircles the origin 

N = z-P (24) 

times in a positive sense. t 

Positive encirclement about a point, po, is defined as follows. Consider a radial 
line drawn from p. to a representative point on the closed contour. As the point on 
the contour proceeds around the contour in a positive sense, the radial line sweeps out 
an angle 277 N, where N is a positive integer. The point, po, is then said to be en- 
circled N times in a positive sense. 

Consider now the special contour, rl, shown in Fig. 4. We say that (loosely 
speaking) p is very small and Q is very large. This will enclose all the finite poles 
and zeros of Y(s). The small semicircle about the origin is drawn so that a pole of 
Y(s) at the origin is not on the contour. Similarly, arbitrarily small semicircles are 
drawn on the imaginary axis to avoid purely imaginary poles and zeros of Y(s). 

We now investigate the form of r2 when a point on rl approaches zero on the 
positive j w axis (i. e . , with p + 0). If Y(s) has an nth order pole at the origin, then it 
may be written as 

+ . . . . . . +a 
) 0 

+ . . . . . . +b 
0 > 

For small s, this may be approximated by 

ao 1 m-- ‘fs) f., 
0 0 sn 

(25) 

(26) 

?This result, which follows from a simple application of Cauchy’s Residue Theorem, 
is proved in any standard text on complex variables. 
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,Re 

Figure 3. Mapping of Closed Contour in s Plane to Closed Contuur in Y Plane 
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jo Now if s1 is any point on the small semi- 
circle, it may be expressed as 

je s = p e  1 

The corresponding point on the I'2 con- 
tour is approximated by Eq. (26). 

It follows that if the small semicircle 
about the origin is described in the sense 
shown in Fig. 4, the corresponding portion 
of the r2 contour describes n large semi- 
circles in a counterclockwise direction. 

Let us now assume that Y(s) has the 
special form 

1 Y(s) = - + L(s) 
n K 

- 

h n e  4. Nyquist Contour in s Plane 

(27) 

where K, is a positive constant. The mapping of the rl contour of Fig. 4 onto the L 
plane can be obtained by shifting the corresponding map on the Y plane to the left by 
an amount I/%. 

It follows that contour r, of Fig. 4, described in a positive sense, will map into a 
contour, r, in the L plane, that encircles the point (-l/Y,, j 0) in a positive sense 
N = z - P times. 

This is the Nyquist Stability Criterion. Note that if L(s) is expressed as 

where A1(s) is the quantity that multiplies Kn in the numerator of Eq. ( la) ,  and A2(s) 
is the quantity that multiplies sn in the denominator, then 

Y(s) = 
K sn A2(s) n 
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It is obvious that the roots of the numerator (zeros) of Eq. (28) are also the roots 
of the characteristic equation (22). 

Since the poles of L(s) are also the poles of Y(s), it follows that Eq. (22) has 

z = N+P (29) 

roots in the right-half plane, where P is the number of poles of L(s) in the right-half 
plane and N is the number of positive encirclements of the (-l/Kn, j0) point in the L 
plane. 

Remark: In most textbooks, one considers 

L(s) = 
K, Al(s) 

sn A2W 

and stability is described in terms of the (-1, j0) point. However, it is 
simpler to move the point l/K, than to redraw the KnAl(s)/snA2(s) locus 
for every new value of Kn. Note also that if Kn is a negative quantity, all 
the previous results hold except that the critical point is (l/Kn, j0) instead 
of (-l/K,, j0). 

The value of the exponent, n, in the above expression indicates the so- 
called “system type. ” (See Sec. 3.3.1.) It provides a measure of the 
steady-state error in response to particular input signals (step, ramp, 
etc. ). 

Table 1 shows frequency-response and root-locus plots for some typical open-loop 
transfer functions. For the cases shown: 

1. Kn and 7 are positive constants. 

2. Arrows on the Nyquist plots indicate the direction of increasing frequency. 

3. The symbols N, P, and z on the Nyquist plots have the meaning defined by 
Eq. (29). 

4. Ri .on the root locus plot denotes the operating point (i.e., it is the closed- 
1 oop pole). 
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Table 1. Frequency Response and Root Locus Plots of Some Common Open-Loop 
Transfer Functions 

Case 1 

-9oa 

i)=a, 
-180” 

I 
i 

I -270’ 
, N=O 

F P=O 
dd z= 0 

Nyquist Plot Bode Plot 
-1‘S db/oct 

KG@) H@) = scfls+l) (r2s+l) 

Gain 

Nichols Plot 
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I- 

Table 1. Frequency Response and Root Locus Plots of Some Common Open-Loop 
Transfer Functions (Cont) 

Case 2 

-- 
\ 

\ 
-90’ 

OM 

/ -270 

-A 

-12 

A- 

T a ‘b 1. -18\ 
r4 

Nyquist Plot Bode Plot 

Kn(ras+l) pbs+‘) 
KG(s) H(s) = 

sc’p+l) (T2s+q cr3s+l) F4s+l) 

Nichols Plot 
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Table 1. Frequency Response and Root Locus Plots of Some Common Open-Loop 
Transfer Functions (Cont) 

3 Case 

/ N=O 

9 
P=O 
z =o 

-18 db/oct 

Nyquist Plot Bode Plot 

KG(s) H(s) = 
KnCras+l) 

s2Ql.+l) (r2s+1) 

R1 4 
R R \ 

4L--wL- 
1 1-1 -- -- -- 

r2 ‘1 ‘a 

R2 t 

Double Pole 

/ 
; u 

M 

0 dt 
.--z--p 

Gain Margin 
-L-. 

f cd-*= 

Root Locus 

26 

Nichols Plot 



I - 

Note that when there is an nth order pole at the origin, the point w = O+ is connected to 
w= 0’ by n large counterclockwise semicircles. Furthermore, an encirclement of the 
-1 point is positive if, in tracing the Nyquist diagram as ovaries from +m to J, the 
net encirclement is in a counterclockwise direction. Otherwise, the encirclement is 
negative. This follows from the discussions related to Figs. 3 and 4. 

Two important figures of merit that may be obtained from the Nyquist plot are 
the phase margin and gain margin. These are defined as follows. 

Gain margin is the factor by which the gain, Kn, must be multiplied to make the 
locus pass through the (-1, j0) point. 

Phase margin is the amount of phase shift needed at unity gain to make the locus 
pass through the (-1, j0) point. 

These concepts may be clarified by considering the Nyquist plot of 

K G(s) H(s) = 
Kn Pa S + 1) 

which is shown in Fig. 5. It is readily ascertained that in this case, P = 1 and N = -1. 
This means that there are no closed-loop poles in the right-half plane (i.e., the system 
is stable). 

Inspection of Fig. 5 indicates that the system will be unstable if the gain, Kn, is 
raised or lowered a sufficient amount. The relevant upper and lower gain margins-t 
areX = l/h1 and A, = l/ha. Also, the system will be unstable if a phase lag of y 1 
degrees or a phase lead of y2 degrees is added to the system. y1 and y2 are thus the 
appropriate phase margins. 

The usual specifications for acceptable design are as follows. 

gain margin: 6 db (minimum) 

phase margin: 30’ (minimum) 

The gain margin of 6 db means that the open-loop gain may be increased by a 
factor of 2 before instability occurs. A precise specification of this quantity depends 

tGain margin is generally expressed in decibels. The decibel equivalent, Ndb, Of a 
number, N, is Ndb = 20 log 10 N* 

27 



Kn q* 8 + 1) 
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\ 
\ 
I 
I 

0=0-I 

Figure 5. Nyquist Plot 
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on the degree of accuracy with which the mathematical model represents the physical 
system; it is, in effect, a “margin of safety” in design. In other words, while a no- 
minal value of gain may yield acceptable steady-state and transient response, if a 
relatively small change in gain results in drastic changes in system properties, the 
design cannot be considered adequate. ‘The specification of gain margin is intimately 
related to such factors as measures of performance (see Sec. 3.3.1) and system 
sensitivity. (43) 

The specification of phase margin reflects the amount of additional phase lag (or 
lead) that will cause instability. It is one measure of performance quality (which is 
considered in greater detail in Sec. 3.3.1). 

The values given above are representative of current aerospace design. 

An insight into the significance of phase margin may be obtained by considering a 
second-order system. Thus in Fig. 2, let 

KG@) = & 

H(s) = 1 

Then obviously 

2 
+291J1s+Lcl 1” C(s) = a; R(s) 

29 
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The Nyquist plot of the open-loop transfer function, (30), is obtained by replacing 
s with j w; viz., 

2 

KG(jw) = 
9 

-w2+2jr1w1Lc 
= MA 

where M is the magnitude and cp is the phase angle of the complex number K G(j w) . It 
follows immediately that 

q = -a+0 

where 

2rlo1 tan8 =- 
w 

Also, the value of othat corresponds to M = 1 is given by 

2 
wO = ul” [ G-q - 2 q] 

while the value of 8 corresponding to M = 1 is 

tarleo = 
2V1 

wO 

By definition, the phase margin, Y, is equal to 8,. Therefore, the phase margin 
is given by 

y = talc1 
[*] 

This relation is very nearly linear for 0 7 y 7 50’ and may be written as 

y * 110 Cl (31) 

For second-order systems, the phase margin is therefore directly related to the 
relative damping factor. The response of most systems of engineering interest is, in 
fact, governed by a dominant pair of complex poles. Consequently, in such cases, the 
phase margin is a measure of how oscillatory the system is. (See also Sec. 3.3.1.) 
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It is often convenient to make 
use of the Simplified Nyquist 
Criterion, which may be stated 
as follows. 

If the open-loop transfer func- 
tion, K G(s) H(s), contains no poles 
in the right-hand s plane, and if 
the Nyquist locus does not encircle 
the (-1, j0) point, the system is 
stable. 

It is also possible to derive a 
kind of generalized Nyquist crite- 
rion as follows. Instead of the s 
plane contour, rl, of Fig. 4, con- 
sider the contour, T’i, shown in 
Fig. 6. As before, we apply this 
to the transfer function, Y(s), de- 
fined by Eq. (27). 

In the conventional case, the 
Nyquist locus is obtained by re- 
placing s in L(s) by jw, and letting 
ovary from zero to infinity. To 
describe the contour of Fig. 6, 
however, we must replace s by (3 

Figure 6. Modified Nyquist Contour in 
6 Plane 

‘2 
o+ j w 1 d?$), where PO is a prescribed con- 

stant. Now if the contour, r i, is escribed in a positive sense, then the corresponding 
contour, r’, in the L plane will encircle the point, (-l/K,, jO), N = z - P times in a 
positive sense, where z and P are the Y(s) zeros and poles, respectively, within con- 
tour .l?;. Since the poles of L(s) and Y(s) are identical, this serves to determine the 
number of closed-loop transfer function poles that have either positive real parts or a 
relative damping factor less than To. 

This constitutes the Generalized Nyquist Criterion. 

The computation of L(so), where so =-co o+ jwdl - ri, for 0 < w<a, may be 
simplified materially by using the relation 

(-l)k Tk (c) - j muk (r) 1 uk 

Tk( ) = Tchebychev polynomial of first kind of order k 

Uk( ) = Tchebychev polynomial of second kind of order k 

(32) 

31 



which is proved in Appendix B. 

Thus, a polynomial in 8, of the form 

m 
F(s) = c 

k=O 
ak sk 

becomes 

F(s) = 2 (_‘jk ak t&k kk (c) - j m uk (3) 
l-F0 1 (33) 

after substituting Eq. (32). 

It is often convenient to display a frequency-response plot in a form other than 
polar coordinates (which is the medium of plotting the Nyquist locus). 

The most general case of a rational transfer function in factored form ‘a shown in 

Eq. (18). This consists of terms of the type, *n, s (r 8 + l)*l , and($+$%s.+~l. 

Each of these terms, with s replaced by j o, results in a complex number, M /cp, 
having a distinctive form when plotted for M in decibels and o on a logarithmic scale. 
This is shown in Figs. 7-9. A frequency-response curve, when plotted in the co- 
ordinate scale shown, is called a Bale plot. The fundamental advantage of this re- 
presentation is that the general form of the frequency response csn bs quickly visualized 
and displayed with a minimum of effort, since addition of basic forms rather than multi- 
plication is required. This is, of course, due to the logarithmic, rather than numeric, 
representation of magnitude. 

By making the abscissa the phase angle, 50, instead of.w, we obtain the Nichols 
. A typical curve obtained in this manner is shown in Fig. 10. 

In either the Nichols or Bode plots, a variation in gain is reflected in a shift of the 
magnitude curve either up or down. Also, the effect of adding a particular network is 
easily apparent in the resulting variation in gain and phase on the overall transfer 
function. This property is particularly useful in synthesis and the determination of 
compensating networks to modify the closed-loop performance. This subject will be 
treated briefly in Sec. 3.3. 
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Remark: In general, the determination of stability from the frequency-response plots 
of complicated or nonminimum phase? open-loop transfer functions can be 
done with assurance only from a Nyquist diagram. This is because net en- 
circlement of the critical point is not clearly defined in terms of Bode or 
Nichols plots except in simple cases. Consequently, one can deal with phase 
and gain margins on a Bode or Nichols plot only when these quantities have 
been correctly related to a Nyquist locus. 

3.1.3 Root Locus 

Consider again the feedback system shown in Fig. 2, for which the closed-loop 
transfer function is given by Eq. (16) (repeated here for convenience). 

C(s) = K G(s) 
R(s) 1 + K G(s) H(s) (34) 

For a specified driving function, R(s), it is a straightforward procedure to deter- 
mine the response, c(t), by taking the inverse Laplace transform of (34). To do this 
with a minimum of effort requires that the roots of [l + K G(s) H(s)] be known. 
root locus method(13) . 

The 
IS a systematic graphical procedure for obtaining these roots 

as a function of K when quantity G(s) H(s) is expressed as a product of factors of the 
form (s + p) and (s2 +. 2 P OS + 02). 

The root-locus method is distinguished by the fact that the roots of [l + KG(s) H(s)] 
are also the roots of the characteristic equation of the system. (See Sec. 3.1). Thus 
all the properties of the system response (transient and steady-state) are immediately 
available. This is not the case for the frequency-response methods, where considerable 
additional effort is required to obtain the features of the transient response. 

In order to determine the roots of the equation 

1 + K G(s) H(s) = 0 (35) 

we must find the values of s that satisfy the two conditions 

IK G(S) H(s)1 = 1 (36) 

/K G(s) H(s) = 180” (37) 

The root locus method is most efficient when the poles and zeros of K G(s) H(s) 
are available by inspection. In any case, a locus of roots of Eq. (35) may be deter- 
mined as a function of K in the s plane, and each specific value of K corresponds to 

tA transfer function is minimum phase if it has no poles or zeros in the right-half 
s plane. 
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a specific set of roots of Eq. (35). t As K varies from 0 to m, the loci of roots are 
plotted in the s plane. 

The root locus gives a particularly clear indication of how the closed-loop poles 
shift with changes in open-loop gain, K. In fact, any system parameter may be used 
as the “root-locus variable” if Eq. (35) can be rearranged such that this system para- 
meter appears as the coefficient of G(s) H(s). In simple cases, rules are available for 
quick determination of the locus, given the open-loop poles and zeros. These are 
treated in standard texts (1) and will not be discussed here. 

For complex multiloop systems where the particular parameter to be varied can- 
not be isolated [such as K in Eq. (35)] , the root locus is still a powerful tool if a 
digital computer is used. The system equations may be fed in as raw data, and the 
computer programmed to solve the equations for discrete values of any parameter, thus 
permitting a root locus to be plotted for this parameter. 

A proper evaluation of the root locus is therefore of fundamental importance in 
system design. Accordingly, this aspect will be emphasized in the discussion that 
follows. 

Let us note, first of all, that G(s) and H(s) are, in general, expressed in fractional 
form as follows. 

G+s) 
G(s) = - 

G2@) 

H1(s) 
H(s) = - 

H2W 

(38) 

(39) 

where Gl(s), G2(s), HI(s), and Hz(s) are polynomials in s. For a physically realizable 
system, Go H2(s) is of equal or higher order in s than GI(s) HI(s). 

Substituting (38) and (39) in (34) results in 

C(s) - K Gl(s) HZ(s) 
-- 
R(s) G2W HZ(s) + K GIW H+s) (40) 

The roots of the denominator of this expression (i.e., the closed-loop poles) are 
obtained from the root locus once K is specified. The roots of the numerator are 
simply the zeros of G(s) and the poles of H(s) respectively. We may therefore write 
expression (40) as 

tThe number of separate root loci is equal to the order of the characteristic equation, 
(35). 
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C(s) - K Q,(s) 
-- 
R(s) Q2W 

U 

K igl (6 - Zi) 
= V (VZU 

j~l fs - Pj) 

The transfer function for a unit step input becomes, therefore, 

U 

K iFl (6 - Zi) 

C(s) = ; 

(41) 

(42) 

’ j~l ls - Pj) 

It is often asserted that the response, c(t) = c-~[c(s)] is governed by a few 
dominant poles, p., in (42) requiring little or no computation to ascertain the general 
features of c(t). & e propose to examine this idea in detail. 

Expressing (42) in partial fractions (assuming that all the poles are simple), 

KO 
V 

K. 

C(s) =,+c k 

i=l i 

Here? 

U 

K = 
K i9, (-Zi) 

0 
g (‘P) j=l j 

KA = 

U 

K ill (S - Zi) 

V 

s jil fs - Pj) 

j#A 
s=p 

a 

(43) 

(44) 

(45) 

tin the terminology of complex variable theory, the K. and Ki are the residues, at the 
respective poles, of C(s). /’ 
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The inverse Laplace transform of (43) is therefore 

p.t 
c(t) = Kg+ kKiel 

i=l 
(46) 

If a pole, Pa, is complex, its corresponding residue, Ka 1s also complex. Further- 
more, in this case, there also exists a term of the form izJ e PQt , where the bar de- 
notes complex conjugate. We then have 

(47) 

where 

Suppose there exists a pair of dominant poles?pl and p2, such that 1 PiI Z+ 1 p1 1 
fori=2, 3, l *.. In order to ascertain if the poles pi (i = 2, 3, l l ’ ) have a negligible 
influence on the response, c(t), it is necessary to examine first the magnitude of the 
term ~ ePit compared to 2 I ~~1 eoit cos (o 1 t + cpl), and second, the influence of pi 
on Kl and(P1. ) 

For definiteness, let us consider the configuration shown in Fig. 11. Eq. (42) for 
this case is written as 

C(s) = 
K 

s (s - P,) (s - P2) (s - P3) (48) 

where 

PI = -a1 fj 8, 

P2 = -al - j 8, 

and 

K = -plp2 p3 (49) 

tA dominant pole in the s plane is defined as that which has the smallest absolute value 
and which therefore has the predominant influence on the time response. 
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/ 

a 

3 
‘P 0 

Figure 11. Configuration of s Plane for Dominant Pole Pair with Additional Real Pole 

We note that via the Final Value theorem of Laplace transforms, t 

lim [c(t)1 = lim [SC(S)1 = 1 
t4- ES-‘- 

NOW 

A. 
C(s) = 2 + 

i= 1 pi 

where 

Ai = [(s - Pi) ‘(‘)Is,p 
i 

The Ai may be obtained graphically from Fig. 11 as follows. 

K 
A0 = - 

a2 d 

(50) 

(51) 

tAssuming the system is stable. 
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A1 = &/=Yl - 90” -Y2 

A2 = d!- 
abc / y1 +90” +y 

2 

A3 = +180° 
c2 d 

where 

a = IP,‘PO1 = IP2-P,l 

b = lp1-p21 

C = IP1-P3I = IP2 -P3l 

But 

K = -pl P2 p3 

= -(a; +$)p3 

= a2d 

Therefore, A0 = 1. Furthermore, 

Nowifd>>a, thencmdand 

which indicates that the influence of p3 on the magnitude of A1 becomes vanishingly 
small. Furthermore, in this case, y2 + 0, which indicates that the phase contribution 
also becomes negligible. 
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Also 

IA,1 = &- =c- Oforcsa 
c2 d c2 

and 

ep3t = .-dt 4 0 for large d. 

A widely used empirical rule is that pi may be neglected if I PiI > 6 I pll where p1 
is a dominant pole. The above analysis obviously holds for pi complex. 

Several general conclusions may be drawn regarding the influence of a pole, p3, on 
the negative real axis on the time response of the system when p3 may not be neglected. 
First, we note that A3 is a negative quantity. This means that the term A3 e P3t subtrac 
from the time response. This, in turn, means that the additional pole on the negative 
real axis tends to make the system more sluggish. The overall effect is to make the 
system behave as if the relative damping factor and natural frequency were decreased. 

Consider now the influence of a zero on a dominant pole pair. In this case, we 
write 

K @ - z1) 
C(s) = 

s (s - PI) (s - P2) (52) 

where p1 and p2 are as before and 

p1 p2 K = -- 

z1 

This choice of K yields a steady-state unit step response of one. The pole zero 
configuration is nclw as shown in Fig. 12. The partial fraction expansion of (52) is 

ts 

2 A . 
C(s) = s+ c 

is 0 ‘i 
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Im 

p1 

Re 

Figure 12. Pole-Zero Configuration for Dominant Pole Pair and Additional Zero 

An evaluation of the residues gives 

Kd A0 = 

Al = 

A = 
2 

Also, 

a2 

z/y2 - 90° -Y1 

Z/-Y2 + 9o” + y1 

K= ‘1’2 a2 --=- 
z1 d 

and 

A =l 
0 
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while 

IAll = z = f . ;’ = IA,1 

For d >> a, obviously, c =d, y2 + 0 , and the infIuence of the zero on the system 
response becomes vanishingly small as in the case of the additional pole. However, 
when the zero z1 is not negligible, it adds a phase lead of y2 degrees rather than a 
phase lag (which was the case for the pole). As a result, the first maximum in the 
system response is reached sooner. The overall effect is therefore a system with a 
faster response time (than the system without the zero) and an apparent increase in 
natural frequency and relative damping factor. 

The influence of additional poles and zeros on the response of a system having a 
dominant complex pole pair may be exhibited qualitatively as shown in Fig. 13. 

In order to complete the discussion, it is necessary to consider a dominant com- 
plex pole pair with an additional small dipole (nearly coincident pole-zero pair) any- 
where in the s plane. The effect of this dipole is virtually negligible, since the vectors 
drawn from the dominant pole to the dipole are nearly equal and the phase contribution 
from the zero cancels that due to the pole. Furthermore, the term Kiepit due to the 
pole in the dipole is very small, since Ki is small because of the nearby zero. 

Complex Poles Alone 

Figure 13. Unit Step Response Showing Influence of Additional Pole or Zero 
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When the additional poles and zeros have appreciable influence on the system re- 
sponse, the general qualitative features of this response may be quickly determined 
via the graphical methods used here. However, various nondimensionslized unit step 
responses obtained via computer are shown for reference in Table 2. These are use- 
ful for preliminary design studies. 

The foregoing ideas provide a clear qualitative description of the system response, 
given the closed loop pole-zero configuration. Because both the transient and steady- 
state features of the motion are readily apparent from the root locus, this technique 
exhibits marked superiority over the classical frequency-response methods. How- 
ever, the two approaches tend to supplement rather than conflict with one another. 
The addition of poles and zeros to a root locus diagram, for example, generally re- 
quires that the loci be redrawn and new operating points (closed-loop poles) obtained 
for specified gain. In a Bode or Nichols plot, the new gain and phase margins are ob- 
tained virtually by inspection, with little or no rework required. 

Example 3: Consider the pitch plane autopilot of Fig. A3 (in Appendix A). Bending, 
slosh, and gyro dynamics are neglected, with the result that the open-loop transfer 
function may be expressed (see Fig. 14) as 

or 

K G(s) H(s) = 
KA KIPc 

% 

I (++I) (%s+l) 
-L(-g-j(<+l) (rs+l) 

45 

(53) 

(54) 
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Figure 14. Simplified Pitch Plane Autopilot for Launch Vehicle 



The following parameter values’are used. 

7 = 0.04 set 

%= 0.333 set = 6.45 set 
-2 

% 

KC = 
-2 

15 set 
-1 

% 
= 2.14 set 

KA = 3 (nondimensional) 

Replacing s by j win Eq. (35) and letting wvary from zero to infinity, we obtain the 
Nyquist plot of Fig. 15. - 

Since there is one open-loop pole in the right-half plane (P = l), and one clockwise 
encirclement of the (-1, j0) point as wvaries from -03 to +m (N = -l), we find from Eq. 
(29) that z = 0; hence the system is stable. 

An inspection of the diagram indicates that the upper and lower gain margins are 
X, = l/O.23 = 4.35 = 12.8 db and X2 = l/6.32 = 0.158 = -16.2 db respectively. Con- 
sequently, if KA is assumed to be the only adjustable parameter, instability occurs for 
KA> 3 X 4.35 = 13.1 or KA< 3 X 0.158 = 0.474. The phase margin is found to be 26’. 

The Rode and Nichols plots for Eq. (35) are shown in Figs. 16 and 17 respectively. 
Also indicated are the gain and phase margins noted above. 

The Nichols plot is used extensively by many aerospace agencies to represent 
complicated open-loop transfer functions. In order to discuss the general features of 
such a diagram, we will include the effect of three bending and two sloshing modes 
added to the present example. A Nichols plot of the general form shown in Fig. 18 is 
then obtained. The terminology in this figure is that in general use in the aerospace 
industry for autopilot control of launch vehicles. The gain and phase margins related 
to specific modes are immediately apparent. If additional phase lag exceeding Y1 
degrees is introduced at unity gain, the rigid body mode will become unstable. Simi- 
larly, Yl and Y2 represent the factors that, if exceeded either by an increase or de- 
crease in gain, will make the rigid body mode become unstable. Also, the addition of 
a phase lead of Y3 degrees (at unity gain) will cause the first bending mode to become 
unstable. 

Autopilot performance specifications are often expressed in terms of gain and 
phase margins for specific modes. The ease with which these quantities are deter- 
mined on a Nichols plot makes this type of specification particularly attractive. 

We may also analyze the system of Fig. 14 using root locus. The poles and zeros 
of the open-loop transfer function are available from inspection of Eq. (53)) and the 
root locus is shown in Fig. 19. 
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Figure 15. Nyquist Plot for Example 3 
52 



-11 

-2 

Magnikde’ 

K =’ 
A 3 

’ ’ I/I I I I I ‘n(k+‘)(%‘+‘) 
KW)W) = , n , 

KI = 0.20 

KR = 0.333 

-K = 15 
C, / 

I 
0.6 u 

. 

t 
s(;~-j(~+I)‘;..] 

0.2 0.3 0.4 

I I 
K = KA ‘1% 

n % 
I I 

1 2 3 4 

Frequency (rad/sec) 

w 

- 

- 

\ 

- 

- 

7 = 0.04 

CCC 
= 6.45 

4x = 2.14 

-160 

Figure 16. Bode Plot for Example 3 
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Figure 17. Nichols Plot for Example 3 
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Figure 18. Nichols Plot for Example 3 with Bending and Slosh Modes Included 
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Figure 19. Root Locus for Example 3 
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Certain correlation with the results obtained via frequency response are immedi- 
ately evident. Thus, it was found from the frequency-response analysis that instability 
occurs for KA < 0.474 or KA > 13.1. According to Fig. 19, there will be closed-loop 
poles in the right-half plane if KA < 0.47 or KA > 13.2. That the agreement is quite 
good is not surprising, since a lack of agreement would simply indicate an error some- 
where in the analysis. 

For KA = 3, the closed-loop poles and zeros, obtained from Fig. 19, are shown 
in Fig. 20, where the pole at the origin represents a unit step input. In calculating 
the response for this case, the dipole at (-0.2, -0.36) and the pole at -29.9 are very 
nearly negligible. Therefore, from Eqs. (46) and (47). 

c(t) 
a? = 8(t) = K. + 21Kll e COB (q t +ql) + K2 e 

pSt 

The pole locations are 

p1 = al+ju 1 
= -2.42 + j 6.1 

p2 = -4.93 

From this it is apparent that the step response is governed primarily by a con- 
stant, a damped oscillation, and a time-decaying term. In fact, we find immediately 

oscillation frequency: 0 1 
= 6.1 rad/sec 

relative damping factor: cl = 
&+ =J 

2.42 

6. I2 +2.422 
= 0.37 

1 
1 time constant of decaying exponential: 7 =’ = - 

4.93 = 0.203 
p2 

As before, we find that the unit step response in the steady state is unity, which 
means that K. = 1. Therefore, from Eqs. (44) and (45), 

K z, 
KO 

I = -= 1 
2 

p1 p2 

IK,j = KA3 
Ao A1 A2 

K Q2 - zl) 
K2 = 
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-6.1 

Figure 20. Closed-Loop Pole-Zero Configuration for Example 3 
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A0 = Ip,I = 6.56 

A1 = 21 wll = 12.2 

A2 = IP1- P2l = 6.6 

A3 = 1pl - zll = 6.12 

z1 = -3 

These values are measured directly on Fig. 20. We have, finally, 

IK,I = >. !$. ; 
1 2 

The first of these expressions shows how the amplitude factor of the oscillatory 
response is influenced by the presence of the additional pole and zero. 

The significant fact about K2 is that the exponentially decaying term K2 ePZt will 
be positive or negative, depending upon whether the zero or the pole is nearer the 
imaginary axis. All the essential features of the response are thereby delineated. 

We will conclude the discussions of this section by considering various refinements 
in root locus technique developed in recent years. The usual method of obtaining the 
root locus is by graphical trial and error, aided by various systematized procedures. 
However, by analyzing the root locus as a continuous function, certain features that 
are obscured by the graphical approach become evident. 

3.1.4 Analytic Root Ioci 

According to Eq. (35), the root locus is the function that satisfies 

Y(s) 9 K G(s) H(s) = -1 

We may write this as 

G(s) H(s) = - + 

(55) 

(55) 
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Since K is always real, any value of s for which G(s) H(s) is real will be a solution 
of (56). Thus the root locus is defined by the condition? 

Iin [G(s) H(s)] = 0 

or equivalently 

h [KG(S) H(S)] = 0 (57) 

Eq. (57) is valid for positive or negative K, which means that this yields the root 
locus for --<K<-. We may add the relations 

Re [G(s) H(s)] < 0 for K > 0 

Re [G(s) H(s)] > 0 for K c 0 

to distinguish the loci for positive or negative K,but this is not necessary for present 
purposes. 

We will therefore refer to Eq. (57) as the equation of the root locus, regardless 
of the sign of K. 

Usually, Y(s) may be written as a ratio of polynomials in s; viz., 

P(s) -- Y@) = KG(s) H(s) - Q(s) (56) 

In this case, Eq. (57) may be expressed as 

h P(s) = [ 1 Q(s) 
h P(s) Re Q(s) - Re P(s) h Q(s) = o [Re Q(s)]~ + b.m QW‘J 2 

which reduces to 

Im P(s) Re Q(S) - Re P(s) Im Q(s) = 0 (5% 

This is the equation of the root locus. If P(s) = a real constant, then (59) simplifies to 

Im Q(s) = 0 G-50) 

Two features of the root locus may be derived immediately from Eq. (59). First, 
replacing s by u + j o, setting w equal to zero, and then solving the resulting equation 
for CJ yields the “breakaway points” for the real axis. Also, if s is replaced by cr + 
jo and (T is then set equal to zero, the solution of the resulting equation for wwill 
yield the points of inter section with the imaginary axis. 

t Im ( ) aimaginarypartof ( ) Re ( ) 5 real part of ( ) 
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In certain simple cases, Eq. (59) represents some well-known elementary curve. 
Consider the case 

Y(s) = 
K (8 +a2) 

(s +q2 + s”l 

From (58) and (59)) we have, after replacing s by u + j o, 

( u+o! 2 ) 2 +u2 = ( Q 2 1 -a 2 > +p 1 2 

This is the equation of a circle of radius R = 
The root locus is shown in Fig. 21. I 

(~1 2 l/2 -cu~)~ + fiI and center at 
(-a2 ,jO). I 

In similar manner, one finds that the root locus for 

Y(s) = 

shown in Fig. 22 is also a circle, centered at the point u. on the figure. 

It is apparent that only in simplified cases is it possible to obtain useful infor- 
mation with relatively modest effort. When s is of high order, the resulting algebraic 
complexity makes this approach quite unattractive. 

In certain cases, however, it is possible to construct complex root loci from 
simpler ones by making use of the following theorem due to Steiglitz. (17) 

“Let TI be the root locus associated with Gi(s), and let T2 be the locus associated 
with G2(s). Then the intersections of Ti and T2 are on the root locus associated with 
Gl(s) G2(s);” 

This theorem is useful when the total open-loop transfer function can be broken up 
into a product of two other transfer functions whose root loci can be drawn immediately. 
The concept of an arbitrarily located coincident pole-zero pair in combination with the 
above greatly facilitates the construction of various types of root loci. We will illustrate 
the application of these ideas in the construction of the root locus for 

Y(s) = 

(q&&q 
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Figure 21. Root Locus for Y(s) = 

K 
Figure 22. Root Locus for Y(s) = I @ +a2j2 + $1 

(8 +q 
2 2 

+B 1 - 
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Figure 23. Root Locus Construction by Combination of Simpler Loci 
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Figure 24. Final Root Locus Constructed from Simpler Loci 
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The pole configuration for this case is shown in Fig. 23a,which also shows a 
coincident pole-zero pair at (-y, j0). This arrangement may be broken up into the 
two separate pole-zero configurations shown in Fig. 23b and c. For each of the two 
latter cases, the root locus may be drawn immediately as shown. Superimposing these 
two loci yields points of intersection that define a point on the root locus for the given 
transfer function. Putting the coincident pole-zero pair at another location along the 
real axis again yields two further points on the root locus of the original function. By 
taking a sufficient number of locations for the coincident pole-zero pair, a number of 
points on the root locus for the given transfer function will be obtained such as to 
completely define the curve. Fig. 24 shows the final form of the root locus constructed 
in this manner. 

3.2 STABILITY ANALYSIS -- SAMPLED DATA SYSTEMS 

The analysis of sampled data (variously called discrete, or digital) control sys- 
tems is based mainly on the development of specialized tools that permit the application 
of the usual linear methods (Nyquist criterion, root locus, etc.) to the problem at 
hand. In this respect, the Z transform and its extension, the modified Z transform, 
play a fundamental role. The manner in which these concepts are treated in most 
standard texts leaves much to be desired. Representing a sampler output as a sum 
of terms, each of which is a constant multiplied by a unit impulse, is not without its 
mystical overtones. In fact, without a corrective term (omitted in most texts), such 
a representation is wrong. 

It would seem appropriate, therefore, to discuss the underlying ideas of the 
mathematical model of the sampling process in a plausible and logical manner. It is 
neither necessary nor desirable to assume that a pulse width is “infinitely small.” One 
may develop the concept of a Z transform without appealing to this assumption, which 
does violence to physical intuition, and which therefore casts some doubt on the validity 
of the results. 

Having laid a firm foundation (hopefully) for the fundamentals, the prominent as- 
pects of the theory follow readily. These include the essentials of Z transform alegbra, 
application to feedback systems, sample and hold, transport lag, etc. An application 
of the methods to a problem in attitude control of a launch vehicle will conclude the 
discussions. 

3.2.1 The Z Transform 

The fundamental sampling operation will be discussed with reference to Fig. 25. 
It is assumed that the sampling rate is constant, with period T, and that the sampler 
is closed for an interval of length y. The output, r*(t), may therefore be expressed as 

r*(t) = h(t) r(t) (6 1) 
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Figure 25. Sampler Operation 
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where h(t) is a time function of the form shown in Fig. 26. By taking the Laplace 
transform of both sides of this equation, we find 

R*(s) = H(s)*R(s) 

where the symbol + denotes complex convolution, t and 

H(s) = C [h(t)] = ’ - ‘-:cs 
s(i-e 1 

Noting that 

l- .-ys 
lim s 

( > 
=Y 

s-o 

we find that the only poles of H(s) are the zeros of 

(1 -emTs) 

A 

lJ--T-iil-y __ - 

-t 
Figure 26. Modulating Time Function 

(62) 

(63) 

tCf. Ref. 3, p. 275. 
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Consequently, we find that the poles of H(s) are given by 

8 n = jnws 

n = 0, *l, *2,***# 

where 

0 =2n 
s T 

= sampling frequency 

If we denote the residue of H(s) at the pole, s,, by kH (sn), then we have 

-ii nwsY 

$ <‘n) = ’ -  ~nnj 

n = 0, fl, l 2,**** 

Making use of a well known theorem in Laplace transforms?, we may then express 
Eq. (62) in the form - jyy R*(s) =c '-eznnj [. 1 R (8 - s,) 

n 

Since 

lim lWe 

-byY 
[ 1 Y 

n+O alrnj =?; 

we may write Eq. (64) as 

R*(s) = +R(s) +x E (8 - Sn) 
n 

(64) 

(65) 

Wf. Ref. 3, p. 277. 
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Now by taking the inverse Laplace transform, we find 

r*(t) = Z+. r(t) + r(t)x $ sin nos t - sin nWs (t -Y) 
n I 1 (66) 

n = 1, 2, 3,**** 

This result displays the output of the sampler as an attenuation of the input plus 
an infinite number of higher harmonics of decreasing amplitude. 

Equation (66) is exact; no approximations of any kind have as yet been introduced. 
Let us now assume that y is a small quantity (small in the sense that second- and 
higher-order terms in the series expansion for e-j n %y are negligible). Then Eq. 
(64) becomes 

and Eq. (64) reduces to 

R*(s) = + 

Wit l/T is precisely the residue of AT (8) at the pole sn, wheret 

6,(t) = c 6 (t -nT) 
n 

n 5 0, 1, 2,**** 

= 1 + emTs + e 
-2Ts + . . . . 

= 
1-:-Ts- 

(67) 

(6 53) 

6 = 
n Inw 

S 

tb(t) = unit impulse function. 
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It ‘follows, therefore, that (68) is equivalent to 

R*(s) = Y AT (8) r R(s) 

which, after taking the inverse Laplace transform, becomes 

r*(t) = Y r(t) bT 0) (70) 

Thus, in fact, it does appear that the sampler output is a series of unit impulses, 
with each unit impulse, d(t-nT), being multiplied by the factor yr(t-nT). The purpose 
of the preceding development has been to emphasize the fact that the duration of switch 
closure, y , need not be infinitesmal. For the mathematical representation of Eq. (70) 
to be valid, it is merely necessary that higher-order terms in the expansion for 
e” n Us’ be negligible. This situation prevails when (Y/T)~ is small compared to y/T. 

It is also true that many authors assume, ab initio, that the equation 

r*(t) = r(t) b,(t) = c r(nT) 6(t - nT) 
n=O 

(71) 

represents the sampler output. This is wrong. The multiplying factor, y , which re- 
presents the switch contact duration, must be included as shczvn in Eq. (70). 

We may j however, take the point of view that (71) represents the sampler output 
provided the factor, y , is absorbed in the gain of the transfer function following the 
sampler. This approach does indeed afford a degree of convenience in the develop- 
ment that follows, and we will therefore adopt it. Consequently, we will take Eq. (71) 
to represent the sampler output, subject to the aforementioned understanding. In this 
case, Eq. (68) becomes 

R*(s) = & (72) 

n = 0, fl, f2,-•a* 

With these preliminaries concluded, we may proceed to a formal development of 
the Z transform and its application to the analysis of feedback control systems. 

We now seek an expression for R*(s) when R(s), the Laplace transform of r(t), is 
a rational algebraic function of s. From Eq. (71), we find that R*(s) may be expressed 
in the form of a complex convolution as follows. t 

tRef. 3, p. 275. 
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R*(s) = s1 r(t) b,(t)] = R(s)+ AT (s) 
I 

where AT(s) is defined by (69). But if 

R(s) = +$ 

(73) 

(74) 

where A(s) and B(s) are polynomials in s, and the roots of B(s) are all simple, thent 

(s - sk) 

where 

= & B(s) 1 s=s k 

q = order of polynomial B(s) 

“k 
E a pole of R(s); i.e. a root of B(s) = 0 

Making use of (69), this last equation may be expressed as 

R*(s) = c k;l -iif$--+S-.3] 

(75) 

(76) 

We now define the Z transform of a function, r(t), as the Laplace transform of 
the sampled function r*(t) with esT replaced by z. 

When r(s) has the form (74) and all of its poles are simple, 

Z[r(t)l 3 R(z) = 
j$ *@I [ ...‘k] 

(77) 

If R(s) has a repeated pole of order (m+l), it can be handled by the Z transform 
operation by noting that 

tRef 3, p. 277. 
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1 m 

m+l 
(8 + a) 

= (-l)rn . & . d (2) 
. dam s+a 

For example, if 

R+s) = 
1 = 

(8 + a)2 

thent 

Z [ r+t)] f Z [Rp] = R+z) 

= z[(s+laf] = -ii+%] 
The following illustrates the use of the Z transform in a typical case. 

Example 4: Let it be required to find the Z transform of the function whose Laplace 
transform is 

18 (s + 2) 5’ - ! .! -- 
R(s) = 

(s + 3) (8 + 6)2 
u++ 

: 
%/ 

%: f <jr. 
We may express thisfin part& fractions as follows. 

R(s) = 
24 2 2 

(s + 6)2 + (8 - @ + 3) 

Now, by letting 

tThe Z transform operation is expressed by any one of the three symbols shown, which 
are equivalent. 
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we find at once that 

RI(z) = 2t6T 
z-e 

R2W = 2:3T 
z-e 

Also, if 

R3(s) = 
24 

(s + 6)2 

then 

d 
R3(z) = -24 da Z [ 1 -aT 

z-e a=6 

or 

The desired Z transform is therefore 

-6T 
R(z) = 2z-6T - 2za3T + 24 zTe 

z-e z-e (z -e+T) 

A short list of Z transforms is given in Table 3. Various mathematical properties 
satisfied by the Z transform may be found in the literature. (18. lg) 

In order to carry over the block diagram concepts of Laplace transform methods 
into Z transform analysis, one further relation must be established. As a preliminary 
to this, we must show that R*(s) is a periodic function. 

For a particular value of 8, we have, from Eq. (72), 

R*(sl) = + 
n 

n = 0, fl, ti,.... 
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Table 3. Z Transforms of Elementary Functions 

1 

82 
t 

Tz 

(z - 1)2 

1 
s+a 

-at 
e 

Z 

-aT z-e 

R(s) 

-nTs 
e 

1 - 
8 

r(t) 

6(t - nT) 

u(t) 

R(z) 

-n 
Z 

Z 

z-l 

b 

s2 + b2 
sin bt 

z sin bT 
2 

Z - 22 cos bT + 1 

b 

(s + a)2 + b2 

-at 
-aT 

ze sinbT 
e sin bt 

Z2 -2ze -aT 
cos bT + e 

-2aT 

Therefore, 

R*(sl-jos) =$xR(sl-jnws-jws) 
n 

’ R =- 
T c 

n I s1 - jws (1 +n) 1 
By letting m = 1 + n, and noting that 

m=-mwhenn=-m 

we may write the above equation as 

R*(sl-jWs) =+z R(sl-jmws) 

m = 0, fl, *2,.... 
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But the right-hand side of this equation is R*(sl) by definition. Therefore, 

R* (sl - jws) = R* (sl) (78) 

Consider now the simple open-loop system of Fig. 27. It foilows directly from 
Laplace transform block diagram algebra that 

C(s) = G(s) R*(s) (7% 

r(t) To 

T 

r*(t) 
A i 

I 4 G(s) 
c(t) 

Figure 27. Simplified Open-Loop Sampled System 

If c(t) were sampled, then the Laplace transform of the sampled function would 
satisfy (72); viz. , 

c*(s) = * c ( C s-jnws 
n ) 

n = 0, *l, *2,.... 

Using Eq. (79), this becomes 

c*(s) = f G G(s-jnos)R*(s-jnws) 

Noting that R*(s) satisfies the periodic property (78), this further reduces to 

C*(s) = R*(s) [$q G (s - jnwd] 

n=O, fl, *2;•-• 

75 



Rut the term inside the brackets is G*(s) by definition. Consequently, 

c*(s) = R*(s) G*(s) (80) 

If now we replace esT by z, this equation may be written in terms of Z trans- 
forms as follows. 

C(z) = R(z) G(z) (81) 

This is the fundamental equation that permits us to express Z transforms in the 
block diagram notation analogous to Laplace transforms. 

It should be emphasized that C(z) implies a function that is sampled; this is not 
the case for c(t) in Fig. 27. The concept of a Z transform for a continuous function 
is, however, very useful, and this requires that C(z) be properly interpreted. We 
may think of c*(t) as the output of a fictitious sampler, synchronized with the system 
sampler, as shown by the dotted lines in Fig. 27. Consequently, the output function 
derived by Z transform analysis yields values of the time function only at the sampling 
instants. 

It should also be pointed out that the factor, y , of Eq. (70) is now assumed to be 
absorbed in the transfer function, G(s), in order that the Z transform method yield 
valid results. 

The results obtained thus far may be extended to permit the analysis of analog-to- 
digital converters in the control loop. These devices have the property that a continuous 
(analog) input produces a discrete output of the form shown in Fig. 28. This suggests 
that the operation may be represented schematically by the diagram of Fig. 29, which 
also contains a transport lag (pure time delay). The switch closure time is assumed 
negligibly small compared with T. A schematic of this type is widely used to represent 
the dynamics of a digital computer in a control loop, since the output of the computer 
consists of fixed quantities whose value is changed in discrete steps at regular inter- 
vals. The transport lag is included to account for the fact that an output signal is 
delayed for a finite interval after an input is applied. 

It follows readily from Fig. 28 that the outplt may be represented as t 

c,(t) = gr(nT)[u(t-nT)-u’(t-nT-T)] 

t u(t) 5 unit step function. 
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j - --- 

r(nT) ------ 
/ 

L‘ 
Input Function 

I I 
I I , 
I 

I 
I 

I I I 
I I 

I 
; 

nT 
t 

Figure 28. Otuput of Sample and Hold 

Hold Circuit Transport Lag 

‘dt) r(t) To r*(t) ) GH (s) ‘l@) ,‘ GL(s) 
b 

T , 

Figure 29. Sampler Followed by Hold and Transport Lag 
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Taking the Laplace transform 

co -nTs 
C,(s) = c r(nT) 

.-(n+l)Ts 

n=O 
b - 

S 
I 

co 
= 

c r (nT) e 
n=O 

However, from Eq. (71), 

R*(s) = c r (nT) 6 (t - nT) 
n=O 

It follows that 

Cl(s) = R*(s) GH@) (82) 

where 

1 - emTs 
GH@) = s (83) 

is the transfer function of the “holding circuit.” The transfer function of the transport 
lag is simply 

GL(s) = e 
TLS 

(84) 

where TL is lag duration. 

In the foregoing development, the analysis proceeded directly from the form of 
the output shown in Fig. 28. This led to the result that the operation could be inter- 
preted as an impulse input applied to a device having a transfer function of the form 
(83). The effect of a small switch closure duration is reflected mainly in a slightly 
distorted “corner” in the output curve shape of Fig. 28. Neglecting this, the result 
given by Eq. (82) is exact. Consequently, when a hold circuit, given by Eq. (83), 
follows the sampler, the factor, y, does not appear, and the discussion following 
Eq. (70) does not apply. Stated another way, when a hold circuit follows the sampler, 
Eq. (71) rather than Eq. (70) is used to represent the sampler. The gain of the trans- 
fer function following the sample and hold is not modified by the factor, y. 
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There is now sufficient information to proceed with the Z transform analysis of 
sampled data feedback control systems. 

However, in order to consider the influence of transport lag without requiring a 
further digression, we will introduce the concept of the Modified Z Transform at this 
point. If, in the diagram of Fig. 27, we introduce a fictitious delay AT as shown in 
Fig. 30, we can write a new function of G(s) as follows. 

Zm [G(s)] = G(z,m) = x [ g (t -AT) b,(t)] (85) 

where 

1 = G(s) e -ATs 

m = 1-A 

r(t) x0 r*(t) ** G(s) 

T 

Figure 30. Sampled Data System with Fictitious Delay 

The output, c(t), in Figs. 28 and 30 is continuous, but the Z transform of the 
output yields values only at the sampling instants. However, by using the modified Z 
transform defined by Eq. (85), the actual output can be obtained by varying A between 
0 and T. One can, in fact, develop a complete theory (lg) based on the modified 
rather than conventional Z transform, but this is beyond the scope of the preseut dis- 
cussion. The modified Z transform will be used only to facilitate the analysis when 
transport lag is included in the control loop. 

We note only that if G(s) may be expressed as 

A(s) G(s) = B(S) 

where A(s) and B(s) are polynomials in s (the latter of order q) and all the roots of 
B(s) are simple, then -- analogous to (77)-- 
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G(z,m) = z 
-1 

emskT 

-T (S - sk) 
l-e I 

The following equation relates the conventional to the modified Z transform. 

G(z) = lim z G (z,m) 
m- 0 

A short list of modified Z transforms is given in Table 4. 

Table 4. Modified Z Transforms of Elementary Functions 

(86) 

(87) 

R(s) r(t) W, m) 

-nTs 
e 

1 
s 

1 
2 
S 

1 
s+a 

b 

s2 + b2 

b 

(s + a)2 + b2 

6 (t - nT) 
m-l-n 

Z 

u(t) 
1 

z-l 

t 
mT -+ T 
z-l 

(z - 1) 
2 

-at e 
e-amT 

-aT z-e 

sin bt 
z sin mbT + sin (1 - m) bT 

Z2 -2zcosbT+l 

-at sinmbT+e 
-aT 

e sin bt 
sin(l-m)bT 

-amT 

Z2 - 228 -aT cos bT + e-2aT 

In Fig. 31 ‘are summarized the basic properties of Z transform algebra. These 
are based on the fundamental relation (81). Parts (a) and (b) of Fig. 31 are straight- 
forward, while the relation given in part (c) is derived as follows. By virtue of (79), 
we have 

RIW = GIW R*(s) 

C(s) = G2@) R; (4 
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/ 
) 

C(z) r---U l *-MB-) 

I 
T 

R(s) Rw * 
t C(s) 

G(s) w 
T 

C(z) = R(z) G(z) 

(a) Simple Sampled Data System 

/ 
‘, 
. C(z) c---Q e-----b 

t T 

R(s) a0 R(z) ; G1(S) I 
w G2(s) 

C(s) I * 
T 

C(z) = R(z) Z [ G1 (8) G2 (s)] = R(z) G1 G2 (z) 

(b) Sampled Data System With Cascaded Elements 

C(z) = R(z) G1 (~1 G2 !z) 

(c) Sampled Data System With Synchronized Samplers 

Figure 31. Z-Transform Algebra 
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But by Eq. (W, 

R*,(s) = G,*(s) R,*(s) 

Combining the last two equations, 

C(s) = G2(s) G,*(s) R*(s) 

The sampled function, C*(s), satisfies Eq. (72); viz., 

c*(s) = + c ! C s-jnws 
II > 

Therefore, 

c*(s) = + F ~,(8-jn~~)Gf~-jn~~)R1*(s-jn~~) 

Utilizing property (78), this reduces to 

However, by (72), the quantity in the brackets is simply G,*(s). Therefore, 

c*(s) = R,*(s) G,*(s) G;(s) 

If now, esT in this equation is replaced by z , we obtain finally 

C(z) = R+z) G+z) G2W 

It is important to emphasize that in general, 

G+z) G2W f G1 G2W 

where, in accordance with common usage, 
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G1 G2@) = Z [ G+s) G2@)] 

Using the relations shown in Fig. 31, the equations for the feedback systems 
shown in Fig. 32 may be derived without difficulty. 

When a pure lag appears in the control loop, the open-loop transfer function may 
be written as 

G(s) = e 
-TDs 

Go(s) 638) 

where TD is the duration of the lag. If we write 

TD = AT 

where T is the sampling period, then three cases may be distinguished: 

1. OCX<l 

2. A’1 

3. X = k = integer 

For case 1, Eq. (88) becomes 

G(z) = Z [G(s)] = Go(zd9]m=1-h 

For case 2, 

G(z) = z 
-A 

Go (z 9 m) 
I 
m=l-A ’ 

where 

(89) 

(90) 

A = integer 

o<xt<l 
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(a) 
G(z) R(z) 

C(z) = l + GH(z) 

0) C(z)= 
G2 W GIWz) 

\ 
1 + G, G2 H(z). 

R(s) +wdTH- G2(s) ’ ! g c(s). 
4 . 

- 
H(s) 4 \ 

(c) C(z) = 
G+z) G2(z) R(z) 

8 
1 + G1 (z) G2 H(z) 

W 
GW4 

‘(‘1 = 1 + GH(z) T 

Figure 32. Selected Feedback Configurations for Sampled Data Systems 
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Finally, for case 3, 

G(z) = z 
-k 

Go(z) 

Having derived the properties of Z transforms and the rules for manipulating 
them, we must n(Iw show how this procedure yields information on the stability and 
response of sampled data systems. 

The key fact is that the Laplace transform of a sampled time function contains 
terms of the form esT (which has an infinite number of roots). We pass to the Z 
transform by the change of variable 

(91) 

ST 
Z = e 

In doing this, the left-half s plane is transformed into the interior of the unit 
circle in the Z plane.? (See Fig. 33.) Consequently, for a sampled system to he 
stable, it is necessary and sufficient that the poles of the Z transform of the overall 
system lie within the unit circle. 

Im 

s Plane 

z Plane 

Figure 33. Mapping of Left Half of s Plane into Z Plane 

tAn analytical proof of this result is contained in standard texts.(18’ lg) 
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It is also of interest to examine the manner in which a constant damping line in 
the s plane is transformed into the Z plane. Referring to Fig. 34, we note that the 
constant damping line is described by 

w= -atany 

where 

S = -a+jo 

Y 
-1 = CO8 1: 

1 

and [I is the relative damping factor. Therefore 

Z =e ST = .T(-o + jo) 

= .-UT (1 + j tan y) 

This is the equation of a logarithmic spiral in the Z plane. (gee Fig. 34.) 

In a similar manner, it is easy to show that lines of constant o and constant a 
in the s plane map into radial lines and circles, respectively, in the Z plane, as shown 
in Fig. 34. 

In describing the response characteristics of a sampled function, it is convenient 
to map the circles, o..$’ = constant, in the s plane into the Z plane. For this case, 
the circle in the s p&e is described by 

S = (r+j(af -u2)1’2 

so that 

2RU 

= ews [cos2rrTr +jsin2rr:r 

where 
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n 
u=-u 

1 

8 Plane 

-u=w 1 

Z Plane 

W=W 
1 

Re 

Figure 34. Transformation of Constant Damping Line 
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Fig. 35 shows this mapping for values of wn from wn 
of constant damping from c = 0.05 to c = 0.9 are also shown. 

Lines 

The use of such a diagram in connection.with a Z plane root locus will be discussed 
subsequently. Rote that a different diagram is required for each different value of 
sampling period, T. 

In order to investigate the stability properties of a sampled data feedback control 
system of the types shown in Fig. 32, it is necessary to determine the location of the 
closed-loop poles of the system. In Fig. 32a, for example, one must determine the 
roots of 

1 + G H(z) = 0 

The root locus formalism developed for continuous systems carries over directly 
in the present case. However, recalling that the system output is given at the sam- 

pling instants only by the 2 transform method, the locations of the closed-loop poles 
in the Z plane are interpreted as follows. 

Location of Closed- Mode of 
Loop Pole Transient Behavior 

I. Outside the Unit Circle 

II. Inside the Unit Circle 

(a) Real Pole in the Right 
Half of the Unit Circle 

Unstable Operation 

Stable Operation 

Decaying Output Sequence 

(b) Real Pole in the Left Half of Alternating Gutput Sequences of 
the Unit Circle Diminishing Amplitude 

(c) Conjugate Complex Poles in the Damped Oscillatory Output Sequence 
Unit Circle 

The application of the methods considered thus far will be illustrated by the fol- 
lowing examples. 

Example 6: A very elementary sampled data feedback system is shown in Fig. 36. 
The transfer function, G(s), is given by 

G(s) = K 
8 (s + 1) 

The sampling period, T, is unity. Taking the Z transform of the open-loop 
transfer function, we find 
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Im 

T = 1.25 set 

ws=$ 
.d s - 

1.2 

2(L'_ 

Z Plane 

Re 

I I I I I I I I I I I I f 
-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 

Figure 35. Lines of Constant Damping and Undamped Natural Frequency 



Figure 36. Sampled Data System for Example 5 

The pole-zero configuration in the Z plane is shown in Fig. 37, along with the 
resulting root locus, which is obtained in a conventional manner. From the diagram, 
it is apparent that the system is unstable for K > 2.43. 

-K = 2.43 

-0.72 

\ 

Figure 37. Z-Plane Root Locus for &ample 5 
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Example 6: In certain launch vehicle control systems, attitude information is derived 
from the guidance computer instead of a displacement gyro. The autopilot configuration 
is then a hybrid combination of analog and digital signals. Fig. 38 is a schematic of 
such a system wherein the effects of guidance dynamics and digital computer character- 
istics are incorporated in simplified form. A detailed discussion of the philosophy 
leading to this configuration is contained in Ref. 20. 

The open-loop transfer function is readily obtained from Fig. 38 as follms. 

0, Ktifdl e 
G(s) = yj-- = [ 1 ‘TDs (1 - eBTs)(s2 +,i) 

E KRw; s2(s2+2SA’LIAs+4 

where 

2 
OA = KA Kc KR ‘c 

2 mO ‘c&T 
WB = -T mope ep c 

The symbols have the meaning defined in Appendix A. 

Assuming that TD = T, the Z transform of G(s) is obtained after a tedious but 
straightforward calculation; viz. , 

DK 
G(z) = - [ 1 ?R” 

where 

D = T-Co 

i [ 

l-e -aT 2 cos bT - cos (bT -56) seccp 

I 

I) 

D 1 
= 2 (l-e-2aT)-2eBaT[(1-$cosbT-cos(bT-q)secq 

I) 

* 
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8 
C 4 + 

f 3F I ’ KRs l 
c 

Pure Lag 
I 1 I I 

- ewTDS W + +-p +1 0 

Zero Order Hold 

1 _ emTs 
S 

KA Kc ‘c 
b i 

s (8 + Kc) 

Figure 38. Control System Schematic for Example 6 



-2aT _ .-aT 
cos (bT - cp) se’c cp 

I 

R1 = 2emaTcosbT 

R. = e’2aT 

Using the following numerical values, which represent a typical booster vehicle, 

KA = 1.4 
cuT = 67.1 ft/sec2 

YR = 0.485 set -1 
a 

P 
= 40.2 ft 

KC 
= 12.5 see-’ 

TC 
= 81,400lb 

mO = 1256 slugs T = 1.25 set 

we find 

D = 1.04 

D 
1 = 0.202 

Do = -49.8 x lo+’ 

R1 = 6.7 X lO-4 

RO = 16.2 x 1O-8 
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Im 

-1.0 0.202 

z Plane 

T=l.25 SeC 

Figure 39. Z-Plane Root Locus for Example 6 



T = 1.25 set TD = 1.25 set --, KI 
8 . . + 6c ELECTROHYDRAULId 

6 
Z 

VEHICLE 
ENGINE-ACTUATOR + DYNAMIC 
SYSTEM 

8 
c + 

-+ 

c 
t 

INTEGRAL GUIDANCE CONTROL LOOP 

HOLD DELAY SAMPLER 

-STD 
e 

Figure 40. Control System Schematic for Example 6 



T = 1.25 aec 

NOTE: operating Point Ku = 0.25 

z 5 s 5 505 1 ZERO 
t I I I I I I I I I I I 1 

-1.2 -1.0 -0. R -0. 0 -0.4 -0.2 
0 0.2 1.1. 4 II. 6 0.4 I.0 1.2 

Figure 41. Z-Plane Root Locus for Example 6 



With these values, we see that the numerator polynomial of G(z) has roots at 
-0.202 and essentially zero, while the roots of the denominator quadratic are both 
essentially zero. Co&equently, for purposes of drawing the root locus, G(z) may 
be written as 

1.04 K 
G(z) = [ 1 w (z + 0.202) 

0.485 
z2 (z - 1) 

The root locus for this case is shown in Fig. 39. Choosing K, = 0.2 yields 
closed-loop poles as indicated by the smsll squares. The response is governed by 
the complex pole pair shown, which has an undamped natural frequency equal to a,/8 
or 0.63 rad/sec and a relative damping factor of 0.35 as determined by an overlay on 
Fig. 41. Instability occurs for Km> 0.37. 

Fig. 40 is the schematic of a realistic launch vehicle control system wherein 
attitude commands are derived from a guidance computer. The vehicle dynamics for 
this case are as given in Appendix A. Bending and other high-frequency dynamics are 
neglected, but fuel sloshing is taken into account. 

The determination of the Z transform of the open-loop transfer function for a 
system of this complexity is not feasible except with computer assistance. The case 
considered is derived from Ref. 21, where a Z transform computer routine(22) is 
used to obtain the poles and zeros of the Z transform of the open-loop function. This, 
in conjunction with any root locus program, yields the Z plane root locus shown in 
Fig. 41. Numbered points on the locus are the guidance gain, Kw. In the present 
case, the sloshing loci are nothing more than coincident pole-zero pairs within the 
stable region (i.e. inside the unit circle). The superimposed curves of constant 
damping ratio and undamped natural frequency give a rapid indication of the nature of 
the system response for any prescribed value of K,. The tendency of the poles and 
zeros to cluster at the origin and the point z = 1 is also shown. A similar phenomenon 
was evident in the previous example. 

Remark: No effort has been made in the preceding exposition to consider a variety 
detailed and specialized topics related to sampled data systems. For a 
more complete treatment of such areas, which include finite-pulse-width 

of 

samplers, multiple samplers with different periods, compensation techniques, 
etc., we must of necessity refer the reader to standard texts. (18’ lg) 

3.3 COMPENSATION TECHNIQUES 

The need for compensation arises when the conflicting requirements on steady- 
state and transient response cannot be satisfied by simple adjustment of open-loop 
gain. Compensating networks will usually be required when: 
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a. The transient response is satisfactory but the steady-state error is too high. 

b. The steady-state error is within allowable limits but the transient response is 
unsatisfactory. 

c. Both the stew-state error and the transient response are unsatisfactory. 

d. Specific performance criteria are not satisfied. 

Before discussing specialized compensation techniques, it is appropriate to con- 
sider the criteria that provide a measure of performance quality. This is done in the 
following section. 

3.3.1 Measures of Performance 

From a controls point of.view, the performance quality of a system may be evalu- 
ated in terms of 

a. Stability. 

b. Sensitivity. 

c. Noise. 

d. Transient Response. 

e . Static Accuracy. 

It goes without saying that first and foremost, the system must be stable. Measures 
of stability are important from a practical point of view and will be considered shortly. 
Sensitivity is usually measured in terms of variation of system performance as a function 
of variations in prescribed parameters. Since this is the subject of a separate mono- 
graph in this series,( 48) it will not be considered here. Similarly, the behavior of the 
system in the presence of noise is analyzed in a separate monograph (50) and will be 
dismissed from further consideration here. We shall therefore be concerned exclusively 
with stability, transient response, and static accuracy. 

The classical interpretation of degree of stability stems from the use of the Nyquist 
plot of the open-loop transfer function as the medium of analysis. Since stability is 
related to encirclement of the “-1” point, it is natural to relate degree of stability to 
proximity of the Nyquist curve to this point. The terms phase margin and gain margin 
were defined in Sec. 3.1.2. These represent the phase lag (or, in some cases, phase 
lead) that can be added to the system (at unity gain) before instability occurs; and the 
factor by which the gain can be increased (or decreased) before instability occurs. Thus 
one may interpret each of these quantities as a ‘factor of safety” in the system. 
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In addition, phase margin is a measure of the response characteristics of the 
closed-loop system to sinusoidal inputs. In Sec. 3.1.2, it was shown that for systems 
whose response is governed by a dominant pair of complex poles, the phase margin is 
intimately related to the relative damping factor. To examine the general case, in 
frequency-response terms, consider the two Nyquist loci depicted in Fig. 42. In Fig. 
42a, the phase margin is relatively large, while in 42b it is small. Consider now the 
closed-loop frequency response; viz. , 

cciw) ‘=. K G(jw) 
W*) l+KG(jo) = M&cp 

cp = tan-l = tan-‘N 

M= I 
K G(W) 

1 +KG(jw) I 

It is apparent that locus 2 (large gain margin) has a smaller peak, M, than locus 
b (small gain margin). Systematic procedures (the M and N circles of classical con- 
trol theory) for determining peak M are discussed in elementary texts on control theory 
and will not be considered here. Cur present purpose is merely to qualitatively exhibit 
the influence of gain margin on the characteristics of the closed-loop frequency response, 
a typical plot of which has the form shown in Fig. 43. In this case, peak M is denoted 
by Mm, and the corresponding frequency by w,. The latter is often referred to as the 
resonant frequency of the closed-loop system. 

An additional figure of merit is available from the response curve of Fig. 43. The 
system bandwidth is defined as the frequency range in which the attenuation (in the pres- 
ent case, quantity M) is greater than - 3 db. Thus, in Fig. 43, the bandwidth is 0 - s. 
The figure of - 3 db is somewhat arbitrary. Some authors define bandwidth in terms 
of 0 db. Bandwidth requirements are generally dictated by the particular system. It 
is usually desired to pass all signals within some prescribed frequency spectrum and 
to suppress all others. In general, while large bandwidths correspond to low static 
errors, they also lead to higher sensitivity to extraneous noise inputs. 

System performance is sometimes sepcified in terms of time-res onse rather than 
frequency - response characteristics, although the two are related. d 
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Figure 42. Phase Margin and Closed-Loop Response 
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Figure 43. Closed- Loop Frequency Response 
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Figure 44. Typical Step-Input Response 
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Fig. 44 shows a typical response to a step input signal. Various figures of merit 
are defined as follows. Rise time is the time required tc reach the first overshoot 
(tr in Fig. 44). The percent overshoot is defined at tr in the manner shown in the figure. 
The time following which the errors are less than 5 percent of the steady-state value is 
called the settling time (ts in the figure). The (step input) steady-state error is the 
difference between the steady-state value of the response and the magnitude of the step 
input (unity in Fig. 44). For second-order systems, it is an elementary exercise to 
relate the above quantities to the undamped natural frequency and relative damping 
factor. Consequently, when a dominant complex pole pair exists, these definitions have 
a useful interpretation. 

Other measures of performance quality are based mainly on an integral of the error 
(difference between input and feedback signals). Among these are 

I = s t le ldt 
0 

I = J e2 dt 
0 

and similar types. (5l) However, these are rarely used and will not be discussed here. 

When prescribed performance, as expressed in any of the above forms, cannot be 
obtained with simple adjustment of open-loop gain, some form of compensation must be 
employed. The conventional networks commonly used for this purpose are the lag, lead, 
or lead-lag types, with frequency-response methods adopted as the medium of analysis. 
Since this approach is amply discussed in standard tests, in what follows we shall 
analyze the compensation problem exclusively from the root-locus point of view. 

3.3.2 Continuous Systems 

The discussion of this section will focus on the control system depicted in Fig. 45. 
Here GI(s) represents the fixed plant that has a transfer function of the general form 

M 
K i91 (8 - Zi) 

GIW = N 

sn jEl fs - Pj> 

(93) 
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and G,(s) is a compensator whose form is as yet unspecified. By defining the quantities 

K 
P 

= lim G(s) 
SdO 

KV 
= lim s G(s) 

s+o 

Ka 
= lim s2 G(s) 

s+o 

(94) 

(95) 

(96) 

1 
e(t) GcW , l GIW 

1 1 . 

Figure 45. Unity Feedback Control System 

which are known as the position, velocity, and acceleration error coefficients re- 
spectively, and where 

G(s) = G&s) G+s) 

we may systematically examine the steady-state response of the system under pre- 
scribed inputs. More specifically, we shall be concerned with the steady-state error 
in response to a unit step input. Using the Final Value theorem, it follows from Fig. 
45 that 

lim e(t) = lim 
t*= I 1 

s R(s) [ 1 sm,o 1 + G(s) 
which, after putting R(s) = l/s, becomes 

lim [e(t)] = lim 1 + lC(s) 
t4- s+o [ 1 

103 



,Assuming for the moment that Gc(s) = 1 (i.e., no compensation), we find that for 
a Type 1 system 6=1 in Eq. (93)1, the steady-state response to a unit step input is 
zero. However, if n=O, then 

lim e(t) = & 
t+= I 1 

P 
(98) 

The position error coefficient is thus a direct measure of the steady-state error 
in response to a unit step input for a Type 0 system.? We shall hereafter be concerned 
only with plants of the form 

M 
K i!l (8 - Zi) 

G+s) = N 

jil (8 - Pj) 

(99) 

M 

K = 
K 191 (-Zi) 

P 
z jq (-pj) 

The general design principles 

i.e., only Type 0 systems. We note that K and Kp are related by 

(100) 

involved in lead or lag compensation will be 
discussed with reference to a specific case. We assume that the transfer function 
of the fixed plant in Fig. 45 is given by 

K 
Gl@) = (8 - P,) (s - P3) (s - P3) (101) 

ti.e., n=O in Eq. (93). 
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and the root locus (assuming no compensation) is as shown in Fig. 46. If it is desired 
that the relative damping ratio of the closed-loop poles equal 0.3, then the open-loop 
gain, K = 165. In this case, we find from Eq. (100) that the position error coefficient, 
KP = 2.95. Via Eq. (98) we find therefore that 

lim e(t) = 0.253 t+- I 1 
In other words, for-a unit step inplt, the final steady-state value of the cutplt is 

1 - 0.253 = 0.747. This error may be reduced by increasing K, which, in turn, de- 
creases the relative damping factor and which, for K sufficiently large, leads to in- 
stability. We seek to increase the open-loop gain (and therefore decrease the steady- 
state error) without decreasing the relative damping factor. For this purpose we 
introduce the compensating lag network 

where 

(102) 

PC = -& 
1 

and A represents the gain (as yet unspecified) of an amplifier associated with the lag 
network. 

The open-loop transfer function is now 

G(s) = = 
@ - zc) 

01 (s - PC) (s - P,) (s - P2) (s - P3) (163) 
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PI = -2 

P2 = -4 

P3 = -7 
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Observe that for the uncompensated case, the gain, K, at point so is readily 
complted from 

3 

and 

K= ill IsO-pil (104) 

In the compensated case, if so is still a point on the root locus, then we must have 

IQl - Iso-pcl ; Is ‘pj 
01 I so - “cl i=l 0 i 

The root locus in the vicinity of so will be essentially unaltered if 

Is(pcl x lso-P,I 

(105) 

(106) 

(107) 

Under these conditions, it follows that 

The new position error coefficient is therefore 

K’ = !!!i 
c-ZJ 

P 01 (-PC) (‘PI) (‘P2) (-P3) = A KP W3) 

In other words, the position error coefficient has been increased by a factor of 
A(=cY) without essentially altering the position of the dominant closed-loop poles. 
Thus, the new steady-state error is 

lim I 1 1 
e(t) = l + A K 

P 

Ifwetake(Y=A= 10, then $ = 10 X 2.95 = 29.5, which means that the steady- 
state error in the compensated case is 

lim [e(t)] = l + ig 5 = 0.0328 
t-- . 
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compared with 0.253 for the uncompensated case. 

In order to satisfy conditions (106) and (107). we take pc = 0.01 and zc = 0.10. The 
exact location is not crucial. However, the dipole must be in the vicinity of the origin 
in order that the influence on the dominsnt pole transient response be negligible. 

The undamped natural frequency for the dominant mode (i.e. , corresponding to the 
closed-loop pole at so) is 4.65 rad/sec. Suppose now that we wish to increase the re- 
sponse time of the system, say by increasing the undamped natural i?equency to 6.5 
rad/sec without changing the relative damping factor. In other words, it is desired to 
have the dominant closed-loop pole at SI in Fig. 46. It is readily ascertained that this 
may he accomplished by adding a network which contributes 33 degrees of phase lead 
at sI. There are an infinity of networks that will do this, but we add the requirement 
that the position error coefficient have a prescribed value. 

The given plant now has the form 

G;(s) = F (s + 0.10) 
(s + 0.01) (s + 2) (6 + 4) (6 + 7) 

We introduce the lead compensator 

G;(s) = 
BA(TIs+l) B (6 - q) 

(A TI s + 1) = (s - pa) 

where 

1 -- 
‘A= XT 

1 

x = zA 
--Cl 
pa 

and B is the gain of the amplifier associated with the network. 

Consequently, the new open-loop transfer function is 

G’(s) = F 
I 1 

(s - zA j t:o - zo) 

(s - Pi) l 3 

(109) 

(110) 

(111) 

108 



where 

z. = zc 
= 0.10 

pO = PC = 0.01 

PI = -2 

P2 = -4 

p3 = -7 

A =a = 10 

K = 165 

If sl is a point on the root locus for the compensated system (111). then we must 
have 

3 

BKA _ I’l-‘J[. j!O l’l-‘jl 
a I s1 ‘“aI IS1-“ol 

The position error coefficient is therefore given by 

&;+A. w-a 1 (‘Z,) 
3 

(‘Pj) jg9 (-Pj) 

3 

= I s1 -Pal lZal . . lZol . j% Isl-pjl 

I s1 -Zel IPal Isl-zoI z 131 
j=O 

(112) 

(113) 

za, pa, and B must be chosen such that s1 is a point on the root locus for the sys- 
tem and the corresponding position error coefficient, K” = 45. 

P 

This may be done as follows. Referring to Fig. 47, we write q as 

XbL K” =- 
P a (114) 
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Figure 47. Calculation of Lead Network Parameters 
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where 

A IV - c =- -- 
IP4 d 

lsl-z,1 = a 

Is1 -P&l = b 

.; L = 1’01 j=O l~-pjl 

I s1 - zo\ l 
5~0 I’d 

The quantity, L, may be calculated from the fixed poles and zeros and is there- 
fore a known quantity. 

From the geometry of the figure, we have 

y1 -- tmy - ,-JBx 1 
cp =/3-r 

tancp = tan (/3 -Y) = ;ytpm-;yIy 

This last relation reduces to 

y1 + (Xl -c)tancp 
x =g= 

2 
ml - x 

y1 1 
c > 

-7 tanq 

(115) 

Applying the law of sines to triangle pA za sl, we have 

a b -=- 
silly sin /3 
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% 
= y1 cosfp - (c - x1) sincp (116) 

Substituting Eqs. (115) and (116) in Eq. (114) and solving for c yields 

All the quantities on the right-hand side of this equation are known. Having c, 
we then determine d from Eq. (115). 

In the present case we have the values 

L = 57.9 K’ = 45 
P 

Y = 6.5 x1 = 2.0 

v = 33O 91 = 6.2 

We find therefore 

C = 5.96 

d = 15.60 

A = 0.382 

which means that 

Pfi = -15.60 

zB = -5.96 

Using these numerical values, we find, from Eq. (ll2), 

BKA = 66(-J 
tY 

112 



SinceA=ol, 

B = q = ‘g = 4.6 

The required parameters have thus been completely determined. Note that the 
amplifier gains, A and B, may be absorbed in the plant gain, K, if the latter is ad- 
justable. The disposition of necessary amplifiers depends on the actual hardware 
configuration of the system; i. e . , the input impedance of the compensating network 
must be low (ideally zero), and the impedance that loads the output of the network must 
be high (ideally infinite). 

In the case just considered, the parameters of the lead network have been chosen 
to satisfy a constraint on the position error coefficient. Sometimes these parameters 
must be chosen such that the ratio of time constants, X, is a maximum. This will re- 
sult in a minimum value for the gain of the additional amplifier, B, and therefore a 
minimum value for the bandwidth of the resulting system. Such a requirement is often 
dictated by noise or saturation constraints. 

Again the open-loop transfer function is as shown in Eq. (111)) and it is required 
that s1 be a point on the root locus. (See Fig. 46.) The values of x1, yl, andcp are 
as before. Referring to Eq. (115)) we seek the value of c that maximizes X. Via 
elementary calculus, we find that this value is given by 

w1 (sin 9 - sincp) 
C = 

sin (8 -cp) 
(118) 

where 

Y 
8 = tan-l 1 0 x1 

and 

Using the given values, we find 

c = 4.18 

x = 0.414 

d = 10.1 

PA = -10.1 

z.e = -4.18 
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From J3-q. (112), 

BKA - = 502 
a 

or 

502 502 
B=K=-= 165 

3.04 

The position error coefficient is obtained from Eq. (113) as 

K” = 37.1 
P 

The form of Eq. (118) permits one to derive a simple gcemetrical construction 
for the determination of za and pa for maximum X. By substituting c from (118) into 
the relation 

we find, after some straightforward reduction, 

tan@ = sin (e -a 
1 - CO8 (e -<p) 

From this it follows that 

Letting6 =90” -/3, and making use of some elementary trigonometric identities, we 
find that the above relationship simplifies to 

6 = $@ -cp) (119) 

As shown in Fig. 47, the required pole and zero are then found after a trivial 
geometric construction. 

The discussions thus far have been concerned with Type 0 systems and the posi- 
tion error coefficient. The procedure is, however, identical for Type 1 and Type 2 
systems where the parameters of interest are the velocity and acceleration error 
coefficients. 
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Figure 48. Comparison of Root Loci for Compensated and Uncompensated Systems 
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Figure 50. Compensation Via Complex Lead Network 
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The simple networks thus far discussed are not effective in all situations. In t&j ,- r’ 
case just considered, the open-loop poles of the fixed plant were CQ the real Ms. ‘I<, _ ,a’- ” 
This permitted camiderable latitude in choosing a lead network that wculd shift the ” 
closed-loop poles. In Fig. 48, the original root locus, before compensation, is shuwn 
dotted, and the root locus of the compensated system is shclwn by the solid lines. 
(This figure is not to scale.) The general qualitative effects are, however, apparent. 
The compensator zero effectively cancels the pole, p2, which enables the main locus 
to be shifted to the left by an appreciable amount. 

Consider now the situation depicted in Fig. 49, where the fixed plant has a pair of 
complex open-loop poles and one pole, p3, on the real axIs. The uncompensated root 
locus is shcnvn by the dotted lines. A simple lead compensator of the form (109) can- 
not alter the system significantly, in the way of increasing either the relative damping 
factor or the undamped natural frequency. This becomes evident by observing a typical 
“compensated” root locus as shown by the solid lines in Fig. 49. A problem of this 
type is precisely the one encountered in launch vehicle autopilots where the lightly 
damped pole pair is due to the vehicle bending mode. Here a more general type of 
compensation is required. A suitable compensating network in this case is given by 

= 

2 
2cZ L+- 

U2 wz s+l 
Z 

2 
%+ 

21: 
P -s+l 

w 
P wP 

WN 

where oz < q,. The complex zero pair, za, is chosen to effectively cancel the com- 
plex pole pair, pl, and the complex pole pair, pa, is moved far to the left. The re- 
sulting situation is depicted in Fig. 50. Fig. 51 shows a passive linear network for 
realizing the transfer function, (120). 

For a fixed, lightly damped pole pair, this type of compensation is effective. 
However, in typical launch vehicle autopilots, the bending mode poles vary with time, 
and a more sophisticated approach is required. These are discussed in “Adaptive 
Control” which constitutes part 8 of Vol. III in this series of monographs. 

3.3.2 Sampled Data Svstems 

In the discussion relating to compensation of sampled data ccmtrol systems, we 
will consider the general configuration shown in Fig. 52. The transfer function of the 
fixed plant is Gl(s) and its Z transform is G1(z). The Z transform of the compensating 
network is G,(z), and the open-loop transfer function has a Z transform given by 

G(z) = GJz) G1(Z) WV 
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Figure 52. Sampled Data System with Compensation Network 

We define the position, velocity, and acceleration error coefficients by 

KG = lim [G(z)] 
z+l 

K* = lim [(z - 1) G(z)1 
V Zdl 

K* = lim [(z - 1)2 G(z)] 
a 

z+l 

(122) 

(123) 

(124) 

We say that G(z) represents a Type 0 system if it has no poles at z=l; G(z) is a 
Type 1 system if it has one pole at z=l, etc. The definitions are completely analogous 
to those for the continuous case discussed @I Sec. 3.3.2, with obvious modifications for 
Z plane rather than s plane analysis. 

Using the Final Value Theorem for Z transforms(lg), we find that 

lim [e*(t)1 = lim 
t-m 

For a unit step input, 
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which means that 

lim [e*(t)1 = lim ’ 
ii-- [ 1 z41 l+G(z) (125) 

Consequently, the error coefficients defined by (122) - (124) provide a measure of 
the steady-state error of the sampled signal in the same manner as the error cceffi- 
cients (94) - (96) do for a continuous system. 

The compensation techniques for a sampled data system using a pulsed compensator 
of the form shown in Fig. 52 follow a pattern analogous to that used for continuaus sys- 
tems. To see this, consider the Z transform of the fixed plant whose most general 
form is 

M 

G+z) = 
K i,l (Z - Zi) 

(126) 

@ - l)n z j=l fz - Pj) 

A Z-plane root locus may be drawn for this in a manner analogous to that used in 
obtaining Fig. 39 or 41; i.e., normal root locus procedures apply. Interpretation of 
these loci is facilitated by the use of a diagram of constant damping and natural fre- 
quency of the type shown in Fig. 35. 

In order to reshape the root locus to alter either the undamped natural frequency, 
relative damping factor, or steady-state error, a compensation network is generally 
required. For purposes of illustrating the principles involved, we will consider only 
the simplest type given by 

(z - ZJ 

Gc@) = (z - p,) (127) 

This compensator is a lead or lag network, depending on the relative location of zc 
and pc in the Z plane. Typical cases are shown in Fig. 53. In general, the com- 
pensator network is of the phase lead type if the pole lies to the left of the zero and 
of the phase lag type if the reverse is true. It is apparent from Fig. 53 that more 
phase lead is obtainable from a compensator of this type if the zero is placed in the 
right half and the pole in the left half of the unit circle. 

As is the case with continuous-type compensation networks, physical realizability 
places certain constraints on permissible locations of the poles and zeros. The com- 
pensator of the pulsed-type shown schematically in Fig. 52 may be implemented by 
digital programming( 23), delay-line networks(24), or sampled RC networks. We will 
consider only the last of these, which in general may be exhibited in the two basic 
forms shown in Figs. 54 and 55. ‘Ibe transfer function, GH(s), represents the zero 
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(a) Phase Lead (c) Phase Lag 

(b) Phase Lead 

P <o 

(d) Phase Lag 

Figure 53. Pole Zero Configuration in Z Plane for Compensating Network, Eq. (127) 
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Figure 54. Series-Type Sampled Data Compensator 
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Figure 55. Parallel-Type Sampled Data Compensator 
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order hold given by Eq. (83), while GA(s) and HA(S) are physically realizable RC networks. 

Consider first the series-type compensator of Fig. 54. We have 

Eo(z) 
Gc(z) = - = 

Ei(Z) 
GH(s) GA(s) s GH GA (z, 

I 

Using GH(s), given by Eq. (83). we find 

or 

z GA(s) [ 1 Gc 03 -= s 
(1 - z-l) 

Substituting for G,(z) from (127), 

Z 
‘GA(s) -= I 1 (1 -9 - zc z .- .-.- 

S 
(1 - z -1) (1 - pc z-l) 

Taking the inverse Z transform and solving for GA(S), 

a (1 - zc) 
s+ 

GA(“) = 
1 ‘PC 

@ + a) 

where 

a = -+lnpc 

TS sampling period, in secmds 
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Tf the network described by (128) is to be physically realizable by passive ele- 
ments, pc and zc must satisfyt 

(130) 

(131) 

Thus, with the series tspe of compensator, only the configuration shown in Fig. 
53b can be realized. The network is phase lead if zc> p, and phase lag if z,<p,. 

A somewhat greater latitude in Pole zero configuration is afforded by using the 
parallel-type compensator shown in Fig. 55. 

Here we find 

Eo(z) 1 
Gc(z) = - = 

Ei(z) 1 + GH HA(z) 

1+ (1 -z-l) z 

or 

Z 
1 - Gc(z) 

(1 - z-l) Gc(z) 

Substituting for G,(z) from Eq. (127)) 

(zc - Pc)z-l zc - PC 

(1 - z-1) (1 - zc z -1) =.l-zc) 

Taking the inverse Z transform and solving for HA(S), 

(132) 

tIf zc 7 1, then the network (128) is nonminimum phase. 
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where 

b = -$lnzc (133) 

In order for the network (132) to be physically realizable by passive elements, we 
must have 

o<zcc 1 (134) 

but there is no restriction on pc other than pc # zC. Note that if the quantity (zc - p,) 
in (132) is negative (i.e., pc > zc), the negative sign at the summing junction in Fig. 
55 is replaced by a plus sign. Note also, that if the transfer function of the plant 
contains a hold circuit, viz., 

GIW = GH(s) G;(s) 

then one hold circuit may he eliminated by feeding the output of GH(s) in Fig. 55 
directly into G;(s). 

Given now the open-loop transfer function whose Z transform is described by 
Eq. (l26), one may shape the resulting Z plane root locus, using the compensator 
(127), to satisfy a variety of criteria. Nothing essentially new in the way of technique 
is involved (other than interpretation), since the usual root locus rules carry over 
directly into the Z plane. One may, for exampie, require a quicker rise time, in- 
creased damping, and/or a decrease in steady-state error. The root locus shaping 
methods are completely analogous to those for the continuous case, except that re- 
sults are interpreted via a diagram of the type shown in Fig. 35. There is, conse- 
quently, more work involved, hut no difference in principle. For purposes of illustrating 
the basic approach, we will take the transfer function of the fixed plant as 

K1 
8 (0.1 s + 1) (0.05 8 + 1) 

which is preceded by a hold circuit of the type described by Eq. (83). 

Therefore, the Z transform of the fixed plant is 

G+z) = 
0.0164 K1 (z + 0.12) (z + 1.93) 

(z - 1) (z - 0.368) (z - 0.135) 

where the sampling period, T = 0.1 sec. 
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It is readily found that there is a zero steady-state error in response to a step 
inpd. However, for a unit ramp in@, 

R(z) = Tz 
(z - 1)2 

there is a finite steady-state error. 

The Z plane root locus for the uncompensated system is shown in Fig. 56. For a 
relative damping factor of 3 = 0.7, the corresponding gain is famd to be K1 = 2.6. 
The associated velocity error coefficient is . 

KG = 0.1X K1 = 0.26 

via Eq. (123). 

Suppose it is required that Kc he increased to a minimum of 1.5 while the relative 
damping factor is kept the same. Obviously, this cannot he accomplished merely by 
increasing K1. Using a sampled network of the form (127), one may derive various 
analytical or geometric procedures to accomplish this in a manner completely analogous 

Numbers on Root 
Locus Denote Values 
of K 1. 

Im 
\I Z Plane 

2.0 

n 

1.5 
38.2 

Re 
e-2.6 

T= O.lOsec 

Figure 56. Z-Plane Roct Locus for Uncompensated System 
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to that of Sec. 3.3.2. However, in the present case, a few quick cut-and-try ap- 
proaches show that a phase lead compensator of the form 

Gc(z) = 
z - 0.368 
z + 0.950 

yields satisfactory results. In effect, the zero in the compensator at zc = 0.368 csn- 
eels the corresponding pole in GI(z), and p, is then located to ensure that the required 
closed-loop pole on the constant c = 0.7 line satisfies the angle criterion of 180°. The 
Z-plane root locus of the compensated system then appears as shown in Fig. 57. Here 
we find that at the new closed-loop pole, KI is 17.1, and the new value of K$ is 17.1. 
Note that the compensated system has a greater gain margin; KI > 61.8 for instability, 
while for the uncompensated system, instability occurs for KI > 13.2. This is a typical 
result obtained when using phase lead networks. 

The block diagram for the complete system is shown in Fig. 58. Note that the 
parallel type of compensator has been used, since a pole in the left-half plane was 
required. 

We have discussed only one type of compensator, namely a passive network em- 
ploying samplers. It is also possible to use so-called continuous compensation where- 
in the sampler following G,(s) in Fig. 52 does not appear. Here, frequency response 
methods are generally employed, and these are more elaborate and complicated than 
the techniques discussed above. Detailed expositions are available in the literature. (lg) 

It was noted in connection with continuous compensation methods (Sec. 3.3.2) that 
a perennial problem in launch vehicle autopilots is the presence of a lightly damped, 
complex-pole pair adjacent to the imaginary axis. When there is a digital computer in 
the loop, as depicted in Fig. 59, the Z-plane root locus takes the form shown in Fig. 
60. Here the lightly damped pole pair is located adjacent to the unit circle, and the 
corresponding locus is such that relatively small values of open-loop gain will result 
in closed-loop poles outside the unit circle. The methods of resolving this problem 
are similar to that used in the continuous case, namely, a sampled data equivalent of 
the notch filter (120). This takes the form 

2 

(135) 

The zeros of Gc(z) are located in the immediate vicinity of the bending poles, 
while the poIes of G,(z) are placed farther away from the unit circle. The resulting 
loci for the compensated case are shown by the dotted lines in Fig. 60. It is apparent 
that the compensated system has a substantially higher gain margin. 
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Figure 60. Z-Plane Root Locus for Launch Vehicle Autopilot 

The sampled compensator of Eq. (135) may best be implemented by utilizing the 
digital computer directly in the loop. For example, the transfer function in z is re- 
placed by the equivalent difference equation 

An 
= al En +a E 

2 n-l 
+a E 

3 n-2 - b2 An-l - b3 An-2 

leading to a straightforward digital computation. 

It was noted in the previous section that the difficulties in this problem are com- 
pounded because the bending pole locations vary with flight time, thereby seriously 
limiting the usefulness of the-above approach. More sophisticated techniques are dis- 
cussed in part 8 of Vol. III in this series of monographs. 

In the current generation of large launch vehicles (Atlas, Titan, Saturn), the ap- 
proach taken for this problem involves programmed gsins and filters. At specific 
times of night, one switches to a different value of open-loop gain (in the summing 
amplifier and/or rate gyro). This is usually accompanied by the switching in or out 
of a prescribed filter. This, of course, presupposes reasonably good data on the ve- 
hicle inertial and bending mode properties as a function of flight time. For certain 
complex vehicles, switching may be inadequate, or else the bending mo& data (especi- 
ally for higher mocks) may not be known with sufficient precision. In this case, the 
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use of one of the various adaptive control techniques may be necessary. Needless to 
say, such a step must be weighed against the added cost and complexity and the de- 
creased reliability that adaptive control entails. 

3.4 STATE VABIABLE METHOD 

3.4.1 Continuous Systems 

The traditional methods for the analysis and synthesis of linear feedback control 
systems make extensive use of the concept of a %ansfer function, l1 whether in the fre- 
quency domain (Nyquist) or in the time domain (root locus). In the rapidly developing 
fields of optimal and adaptive control, however, it has been found more appropriate to 
deal with linear systems via the ~fstate variable” approach, in which matrix techniques 
play a fundamental role. This concept of the “state of a system” has also served 
to clarify various aspects of the transfer function method, especially when applied to 
multivariable input-output systems. The literature contains many incorrect results 
for multivariable systems because various subtleties involved in dealing with a so- 
called matrix transfer function have been neglected. This subject will be discussed 
at length in Sec. 3.5. 

Actually, the terms “state variable” and “state space techniques” are really new 
names for a body of ideas that have long been used in such areas as analytical dynamics, 
quantum mechanics, ordinary differential equations, and stability theory. These ideas 
were first introduced in control theory by the Russians, mainly in the development of 
the Lyapunov stability theory. In the United States, the work of Kalman and Bellman 
(among others) contributed to the widespread adoption of state variable methods in 
control system design. 

The basis for all the subsequent discussions is contained in the following pair of 
matrix equations, which describe the motion of a given dynamic system. 

i = Ax+Bu (136) 

V = Cx+Du (137) 
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Here 

x-n dimensional state vector 

u=-p dimensional input vector 

v=q dimensional outplt vector 

A G nxn constant (system) matrix 

B = nXp constant (inmt) matrix 

C .1 qxn constant (output) matrix 

D 5 qxp comtant matrix 

n I order of the system 

To see how an input-output relation, given in the form af a conventional 
function, may be expressed In the format of Eqs. (137) aad (137)) consider 

transfer 

(138) 

Where s represents the Laplace operator and where, without loss of generality, 
we may take a 

0 
= 1; the ai and fii are constants.t 

Using a variant of the so-called ‘fin methods, If (52) we make the change of vari- 
able 

(139) 

t We make the wual assumption that the initial conditions are zero. 
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Y= 

! 

4.i 
B n-l 

81 

fl0 -- 
“0 

oh 

@O 
I,%-1 
. 
. . 
. 
. 

- 80 -- 
aO 

a1 
! 

Then the system of equations 

% 2 =x 

2, 7 x3 

k-1 = xn 

+.L& 
1 
& - al% - qCnB2 - ---------- - %4X2 - qpl 1 

(140) 

(141) 

together with the transformation defined by (139) is completely equivalent to (138). 

In this case, the matrices for the system, (136) and (137). are given by 

A= 

1 0 

0 1 -. -. *. -. -. -. -. -. -. -. -. -. 
--. o. “.‘l 

C = I, theunitmatrix 

D= 0, the nuII matrix 

(142) 

(143) 
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and 

Note that numerator dynamics have been effectively eliminated; there are no 
derivatives of the forcing function, 6,. in the system (141). 

The matrix, A, for this particular case has a special form known as the com- 
panion (standard) form. 

It should be noted that the state space representation for a system is not unique 
but depends upon the particular transformation utilized. 

With reference to the system described by equations (136) and (l37), we shall be 
concerned with three fundamental questions: 

a. Is the system stable ? 

b. What is the form of the solution for x(t) ? 

c. What is the system transfer function? 

The snswer to the first question is contained in the following.(25) 

“A necessary and sufficient condition for the stability of the system represented 
by Eqs. (136) and (137) is that the real part of each eigenvslue of the matrix, A, be 
negative. ” 

With regard to the second question, the solution of Eq. (136) is given by(25) 

/ 

t 
x(t) = @(t -to) x (to) + U’(t-a) Bu (@da 

t0 

where 

OD Ak tk a(t) E eAt = C - 
k4-j k! 

A” = I, theunitmatrix 
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Finally, in order to derive the transfer function that represents the system, (136) 
and (137)) we have, after taking the Laplace transform, 

X(s) = (Is - A)‘1 [BU(s) + x(to)l 

VW = CX(s) + DU(s) 

If the initial condition vector, x(to), is zero, then combining the above two equations 
yields 

V(s) = L(s) U(s) 

where L(s) is the matrix transfer function, given by 

(146) 

L(s) = C (I s - A)‘1 B+D 047) 

While succinct answers have been provided to the three basic questions posed in 
relation to the system, (136) and (137)) a varietg of details remain to be filled in for 
purposes of design and analysis. In the first place, the solution for x(t), as given by 
Eq. (144), requires the evaluation of the transition matrix, Q(t). Evaluating this 
quantity via Eq. (145) is not the most efficient method, because of error uncertainty 
in the truncation process. A practical and theoretically exact expression for Q(t) is(38) 

Q,(t) = M 

>1t 0 

M 
-1 

(146) 

where the Xi are the distinct eigenvaluest of the matrix, A, and M is the corresponding 
modal matrix. In other words, Ai is a root of the characteristic equation 

1x1-Al = 0 

and for each value of Xi, the matrix equation 

[+-A] ci = 0 

When there are multiple eigenvalues, the expression for Q(t) is much more 
complicated. For a complete treatment in this case, see Ref. 25. 
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yields a value for ci, the eigenvector , which is determined to within an arbitrary con- 
stant. One way of normalizing the eigenvector is to divide every component of the 
vector by the component of smallest magnitude. Thus every eigenvector will have at 
least one component equal to unity. However, this is more a matter of convenience 
than necessity.’ The matrix formed by these eigenvectors is termed the modal matrix. 

For the case of distinct eigenvalues, the columns of the modal matrix can be taken 
equal or proportional to any nonzero column of Adj[&I - A] . Each choice of xi speci- 
fies only one column of the modal matrix, since the columns of Adj[XiI - A] are 
linearly related for a given Xi. Detailed accounts of the foregoing techniques are 
available in standard texts.(39) 

Various special forms of the matrices in Eqs. (136) and (137) are useful in partic- 
ular cases, and it is convenient to denote these by special symbols. For example, A 
is used, as shown in Eq. (136), to denote the most general form of the system matrix. 
If all the components, ai,, of A except 

J 

a 
na 

a i,i+l 

a = 1, 2, a..., n 

i= 1, 2, l **., (n-l) 

are zero, then we say that the system matrix is in companion standard form, 
and we denote it by F. It was noted earlier that the system matrix for the set of 
equations, (141)) is of this form. 

If the input matrix, B, is of dimension n x 1 (i. e. , an n vector), we represent it 
by the symbol, f. In the special case when the nth component of f is unity and all the 
other components of f are zero, we denote it by the symbol, h. The system repre- 
sented by F and h in the state variable form has a special name, the phase variable 
(canonical) form. 

We will also use the lambda and Vandermonde matrices, which are defined re- 
spectively as follows. 

A= 

r 0 5 
x, 

l . l . 0. 0. l . 0. 0. *A 0 I n 

(149) 
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T= 

I: I 

i &.................I 

x1 x2 ‘n 

x2 :l x2” A2 
: n 

: : : . . 
: : : . 

iF-1 
: 
‘n- Q-l . . . . . . . . . . . . . x 
n 1 -1 (156) 

Various transformations for simplifying a given system for design or analysis are 
available. Consider first the system described by 

j, = Ax+fu 
1 (151) 

where 

u1 s a scalar 

The transformation 

x=Jz 

converts Eq. (151) to the canonical (phase variable) fOrm(28) 

5 = Fz+hu 
1 

(152) 

(153) 

where? 

J = MR-lT-l (154) 

in which M and T are the modal and Vandermonde matrices respectively for A, and 
where R is an n x n diagonal matrix obtained from 

R M-lf = T-l h (155) 

Various simplified procedures are available for computing the inverse Vandermonde 
m&r&. (26 * 27) 

tit is assumed that the eigenvalues of A are distinct. 
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An alternate transformation that converts (151) to the phase-variable (canonical) 
form is@) 

x = *?I (155) 

where the transformation matrix, q, is formed as follows. First calculate the 
controllability matrix 

z: f Af A+ . . . . . . . . . . . . . . .A n-41 (157) 

which must be checked to see if it is of rank one. t (Otherwise this method is not 
valid.) Then, after writing the characteristic equation of the system as 

det[A -XI] = X” - &ciXi-’ = 0 
i=l 

we form the matrix 

n= 

Ic2 -c3 -c2 . . . . . . . . . -5, 

1 0 

The transformation matrix is then given by 

053) 

The importance of the canonical (phase variable) form of the system equation, as 
represented by (153). is that this matrix equation may be readily reduced to a single 

th scalar equation involving derivatives of up to n order of the dependent variable. 

The transformation 

x = My (160) 

tThis condition is directly related to the controllability of the pair (A, f). gee Sec. 3.5. 
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where, as aIready noted, M is the modal matrix for A, converts the system, (136) and 
(137), to the normal form(31) 

jr = hy+Pu (16 1) 

V = ry+Du (162) 

Here 

P = MB1 B = normal input matrix 

r= C M = normal out@ matrix 

and his defined by Eq. 049). 

(163) 

(164) 

The n components of the vector y are termed the normal coordinates. Note that 
the form of Eq. (16 1) is such that these are completely uncoupled. 

In terms of the normal matrices, the matrix transfer function, L(s), may be 
readily expressed as a partial fraction expansion. 
ith column of P, and Pi the ith row of P . 

To do this, let ri represent the 
Then 

L(s) = C (I s - A)-1 B+D 

= ~(Is-A;‘P+D (165) 

Noting that 

r 
1 S- % 

(I s - A)-1 = 

I 

0 

the expression for L(s) reduces 

n K 
L(s) = c 

i - +D 
i=l ’ - x i 

tot 

(167) 

tWe are stil.I using the assumption that the eigenvalues, Xi, are distinct. 
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where 

Ki = ri pi w3) 

Quantity q is a q x p matrix of rank one, since it is formed by taking the outer 
product of two vectors. 

We nm i&&rate the application of the above ideas in the following examples. 

Example 7 : We are given the transfer function, 

3s2+4s+l 

s2+5s+2 

It is required to express this in the state variable matrix form, (136) and (137). 

From a comparison with (138), we have 

a0 = 1 8, = 3 

a1 = 5 B, = 4 

a2 = 2 B,= 1 

The state-variable equations are 

g1 = x2 

k2 = -2 x1 -5 x2 + 6 

using (141). Also, from (140), 

(4 

-5 
Y = -11 I[ 1 

Therefore, the transformation, (139), becomes 

8 = 36 -5 x1 -11 x 
2 @I 

To see how the transfer function format is recovered from Eqs. (a) and (b), note 
that from the former, 

i2 = -2 x1 -5 G1 + 6 

. . x1 = -2 x1 -5 i, + 6 
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or 

(s2 + 5s + 2)x 1=8 

From Eq. (bh 

8 = 36-5 x1 -11 x2 

= 36-5 x1 -1151 

or 

(11s + 5)x1 = 36 -8 (d j 

Eliminating xl between Eqs. (c) and (d) yields the original transfer function. 

Example 8: We are given the dynamical system described by 

i = Ax+ful 

where 

A = [- -; ;] f =[;] 

and ul is a scalar. 

It is required to express the system in canonical (phase variable) form. 

The characteristic equation is 

11X -Al = x3+x2 -2 = 0 

which yields the eigenvalues 

x1 = 1 

x2 = -1+j 

x3 = -1-j 
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From thie we otdain, for the modal matrix, 

M= 1 

[ 0 1 

‘(3 + 4j) 

5 + 

‘(3 - 4,) 

(2 1) (2 5 - I) 1 
whose inverse is 

From Eq. (150). we obtain, for the Vsndermonde matrix, 

1 1 

‘(1 - j) ‘(1 + 1) 

4 4 1 
The inverse is 

4j a 

T-l = & (1 - 2j) ‘(2 + 1) 

‘(1 + 2j) I (2 -1) 

The transformation matrix for this problem is given by Eq. (154), where the 
matrix, R, is calculated from (155). 

Since 

[ 

8 

M-‘f = & ‘(1 - 1) 

(1 + 1) 
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where h T = [o 0 11, we find after substituting the above quantities in Eq. (155). 

From this we obtain 

0 0 

2 (1 + 3j) 0 0 2 (1 - 3j) I 

whose inverse is 

0 - 

0 

(1 + 3j). 

Substituting in Eq. (154) yields 

J = MR-‘T -1 

0 -1 1 

= 0 3 1 

2 1 1 
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This is the required transformation matrixthat converts the given system to the 
canonical (phase variable) form in the manner indicated by Eqs. (152) and (153). 

As a check on the result, we calculate 

J -lAJ = 

0 

J-l f = [I 0 

1 

The same result is obtained by using the transformation defined by Eq. (156). A 
simple calculation yields 

S =[f Af ,f]=[; -; -i] 

The coefficients in the characteristic equation, (158), are 

q = 2, c2 = 0, c3 = -1 

from which we form 

0 

n=1 [ 1 1 

1 1 0 0 1 0 

Therefore, by (159), 

r 
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As a check, we calculate 

*+ -1 [ 1 1 -1 1 

-3 -1 

and note that 

q-l A 9 = 0 0 0 1 

2 0 

and 

0 
cl f = 0 [I I h 

1 

-2 
0 
0 I 
0 
1 

1 
ZF 

-1 

Example 9: We are given the system 

i = Ax + Bu 

V = Cx+Du 

where 

A= 

[ 

-2 

1 

-1 

2 c= o 
C 

-1 1 

0 1 

0 1 

0 1 1 3 0 

] B=[ ;] 

5 0 D= o [ 1 4 

We seek the solution for v(t) when the initial condition vector, x(O), is zero, and 
u(t) is a prescribed function of time. 

This can be done in either of two ways: 
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a. By eolving for x(t) from Eq. (144). 

b. By obtaining the matrix transfer function, Eq. (147). and takiug the inverse 
Laplace transform of Eq. (146). 

In the first case, the crucial step is the calculation of the transition matrix, Q(t). 
The system matrix, A, is identical to that of Example 8. Camequently, the eigen- 
values and modal matrix, M, are as given in Example 8. We than calculate @(t) using 
Eq. (148) as follows. 

‘A t 
!l 0 0 

0 
A2t 

e 0 

0 0 :3t 
.n- 

w 

-a 2j 8j 

(-1+ j) -1 1 

p+n - -1 

Carrying out the matrix multiplication, we find that the components of Q(t) are: 

-t 
Qll(t) = e (co6 t - sin t) 

aJ12W = -2 sint 

@l3(t) = 2 sint 

Cp2l(t) = -$[et - e+ (CO8 t + 7 sin t) I 

@22(t) = -$’ + e+ (4 CO6 t + 3 sin t) 
I 

e23w = f[4et -e -t (4 CO8 t + 3 sin f)] 

@3l(f) a ma 5 [et - eet (COB t - 3 sin t) 
1 

*,,W = L et 5 I - 2 (COB t + 2 sin t) 
I 

Q33tt) =+ket+e+(cost+2sint) 
I 

Assume now that the vector, u(t), is composed of a unit step and unit ramp as 
follows. 

u(t) = t’ [I 
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The second quantity on the Hght-hand side of Eq. (MA), which represents the 
particular solution, is a three-dimensional vector whose components thus become 

4(011(t-u)+t~~(t-u)+3t~13(t-u) da 
I 

4@21(t-u)+t(022(t-u)+3t@23(t-u) da 1 
4@31(t-u)+t~32(t-u)+3tU’33(t-u) do 

I 

Using the eij (t) obtained above, these components are readily evaluated by 
elementary methods. For example, a lengthy but straightforward integration yields, 
for the first of the above components, 

1 do 

+ 3t e-(t -0) sin (t - 0) d u 
I 

= t+e -t 4 cos t - t (sin t + cos t) 
1 

Having thus obtained x(t), we find v(t) directly from 

V = Cx+Du 

To obtain v(t) via the matrix transfer function approach, we use Eq. (167). This 
requires the values of I’ and P. These are readily calculated as follows. 

0 5 5 

I?= 1 (-3 - 4j) (-3 + 4j) 

1 (2 + j) (2 9) 1 
1 = 

[ 
(12 + 5) (12 - 1) 

3 -3(3 + 4j) -3(3 - 4j) 1 
146 



Therefore, 

K1 =r.p,=+ [I 3’ c-4 131 = t 5 c -4 -12 13 1 39 

K2 
= r2 p2 = + L$f3;;j,L Cz(l + j) -jl 

1 
2 (11 + 

= 
13j) 

(1 
- 

5 6 (1 - 71) -3 (4 W) 1 - 3)) 

K3 
= r, p3 = $ [-3(s_ZJ Ml - 3 jl 

= L (1 + w 
5 1 -3 (4 + 3j) 

We have, finally, 

Us) 

5 0 = [ 1 0 4 

1 + 52 (11 - 13j) (1 + W) 
5 (a + 1 + j) i 6 (1 + 7j) -3 (4 + 3)) 1 
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Since the last two matrices are complex conjugates, the above reduces to 

L(s) = 

2 + 
(s + 13) 

-3 + 5 (s2 + 2s + 2) (4s 7) 1 
NOW 

I 
U(s) = d: [u(t)] = i#] = 

[’ 
; 

Si 

We obtain, therefore, 

V(s) = L(s) U(s) 

1’ 

V(s) = ’ 5 

0 4 

OS I[ 

1 

2 

I + 5 (s 1 - 1) ’ -12 -4 39 13 ‘[I s 1 1 

” 

3 Y + 
5 (s2 + 2s + 2) 

Taking the inverse Laplace transform of this expression gives v(t). 

Remark: It is apparent that the operations involving multi-input/multi-output systems 
are considerably more complex than those for single-input/single-output 
systems. As a matter of fact, purely formal manipulations in the multi- 
dimensional case may conceal various subtleties, the neglect of which may 
invalidate the final results. These questions wiIl be taken up in Sec. 3.5. 
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3.4.2 Sampled mta @&ems 

Let us now consider the case where the input vector, u(t), is sampled periodically 
and constrained to be constant over each interval; i.e., 

u[(k+&71 = u ee (169) 

k= 0, 1, 2, •~~~ 

andr is the (constant) sampling period. The situation may be depicted in the schematic 
iorm shown in Fig. 61. The system dynamics are described by Eqs. (136) amI (137). 

u(t) 

. 

Sample 
) and Hold ) System Dynamics 

, 

Figure 61. Sampled Data System 

For any prescribed interval, we havim, from Eq. (144), 

J 

(k+E)T 
x [(k +()T] = @((5 7) x (k~) + @(k~ +r$~ -ul Bu (kr)du (170) 

kT 

If we make the change of variable 

$ (u) = k7 +tT -u (171) 

Eq. (170) becomes 

In particular, for 5 = 1, 

xk+1 = Gxk+Huk 
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vk+l =C xk+1+ D uk+1 (174) 

where 

G = Q(7) = e AT 

7 
H= J ‘WI BdrCl 

0 

(175) 

(176) 

xk+l 
E XC@+ 1)71 , etc. 

xk+l may be expressed as a function of the initial state and the input sequence, Ui, 
by successive iteration of Eq. (173); viz., 

xk+1 
= Gk+lxo+k GiH\ 

i=o -i (177) 

k = 0, 1, 2, l *.* 

We may consider Eqs. (173) and (174) as the state equations of a discrete time 
system whose input, state, and output are respectively specified by the vector se- 
quences uk, xkv and vk. This case will be referred to as the discrete time system. 
Since A, B, C, and D are constant matrices, it is easy to verify that G and H are 
constant matrices. 

It shouId be emphasized that xk is the value of the state vector at the sampling 
instant only. This point of view leads to the usual methods of Z transform anaIysis. 
Furthermore, the use of Eq. (172) gives the values of the state vector between the 
sampling instants and is analogous to the modified Z transform theory. 

For purposes of investigating the system stability, it is sufficient to consider the 
homogeneous form of Eq. (177); viz., 

Using the Sylvester Expansion Theorem, (3g) we may write Gk as 
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where pi is a (distinct) eigenvslue of G. Now 

AT 
G=e = MEM -1 

E = 

from Eqs. (175) and (148). The pi are obtained as the roots of 

IG-/LII = 0 

However, 

M-‘(G-pI)M = E-PI 

Therefore 

IM-lj l lG-pII . IMl = IE 

Since M is nonsingular, IM”\ and 

~G-/LII = IE-pII = 0 

-P II 
I M( are nonzero, which means that 

W’) 

(181) 

(182) 

In other words, G and E have the same eigenvalues. Therefore 

xi’ 
pi = e 

Substituting Eq. (179) in (178), we have 

(183) 
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It follows that for xk to be bounded as k -+ CD) it is necessary and sufficient that 

Iql < 1 (184) 

This is the stability condition for the discrete time system, Eqs. (173) and (174). 

We now seek to express the discrete time system, (173) and (174), in terms of Z 
transforms analogous to the Laplace transform representation, (146) and (147). of the 
continuous system, (136) and (137). 

The sampled state vector, x*(t), may be written as 

x*(t) = c x (k~) 6 (t - kT) 
IF0 

which is the vector equivalent of Eq. (71)t. We have, therefore, 

6: [x*(t)] = 5 x (k~) s. 6 (t - kr) 
k=O 

[ ] = j$ x (k7) ewkTs 3 X*(s) 

or 

z [x(t)] E X(z) = c x (kT) Z-k 

k=O 

Multiplying Eq. (173) by zBk and taking the summation from k=O to m, 

CD 

(k+l)r] = G&x(*T)z-~+H&u@T)z-' 
= 

= G X (z) + H U (z) 

by virtue of (186). Also via Eq. (186), 

(155) 

(186) 

(187) 

x(z) = -2 X (k7) Z-k = X(0) + 5 X (kT) z-~ 

k=O k=l 

- 
tThe influence of the multiplying factor, y, in the discussion follming Eq. (71) is not 

relevant in the present case, since we are dealing with a sample-and-hold operation. 
See the discussion following Eq. (84). 
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Making use of the Real Translation Theorem t3), this becomes 

wo = x(0) + z 
-1 

I 
-k 

Z 

or 

OD 
= +t+T)] = +(2)-X(O)] (188) 

Continuing in this fashion, it is easy to show that in general, 

OD 
1 I P Z x (t + m r)] = zm [X(z) - glX (kT) Z-k] (189) 

where m is an integer. 

Substituting Eq. (188) in (187), we find 

z X(z) - z x(0) = G X(z) + H U(z) (190) 

Similarly, by taking the Z transform of Eq. (174), we find 

V(z) = C X(z) + D U(z) (191) 

If the initial condition vector, x(O), is zero, then by eliminating X(z) from the 
above two equations, we obtain 

V(z) = W(z) U(z) (193) 

W(z) = C (z I - G)-1 H+D (193) 

We say that W(z) is the sampled data matrfx transfer function for the discrete _--- 
time system, (173) and (174). 

The transformation, 

“k = MYk ww 
where (as before) M is the modal matrix for A, converts the system, (173) and (174) 
to the normal form 

‘k+l = Eyk+Q\ (195) 
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Vk = ryk+Duk (196) 

where 

Q = MBIH (197) 

and E and r are defined by Eqs. (181) and (164) respectively. 

Consequently, the sampled data matrix transfer function, (193), may be expressed 
in terms of the normal matrices as follows. 

W(z) = r (z I - E)-1 Q + D (198) 

This may be pit in the form of a partial fraction expansion in a manner completely 
identical to that for the continuous matrix transfer function, (165). 

Example 10: Consider the discrete time system shown in Fig. 62. We seek to obtain 
the solution for xl(t) at the sampling instants, first by the state variable methods and 
then by the usual Z transform technique. 

Sample and Hold 
* 

-O b eTs f 
7 

* 

\ , 

* 
1 x,(t) 

2 * 
s +3s+2 

4 . 

Figure 62. Discrete Time System for Example 10 

In terms of state variables, we may express the system dynamics by 

% 2 
=X 

k2 = -2 x1 -3x2 +u(t) 

where u(t) satisfies Eq. (169). This is in the form 

i = Ax+Bu 

V = Cx+D 

where 

0 1 
A = -2 -3 [ 1 
c = [l 01’ 

0 
B= I [3 
D= 0 
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The characterif3tic equation is 

IX I-Al =x2+3X+2 = 0 

which yields the eigenvalues 

x1 = -1 

x2 = -2 

Consequently, the modal matrix for A is 

and its inverse is given by 

Also, 

E= 
e?’ 0 [ 1 0 

,x2T 

while 

+ (7) = MEM-1 = G 

(eq - eB27, 

) -(e 
4 

I -2 em27, 

For 7 = 1, this beCOmeS 

G= 
0.2326 1 -0.0973 

and from Eq. (176) 

H= 
0.1998 c 1 0.2325 
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These computations permit the system to be expressed in the matrix difference 
equation format of (173) and (174). The solution in th.+3 case is given by Eq. (177). 

To derive the Z transform of the system from the state variable representation, 
we calculate 

r=CM=[l -11 

and use Eq. (198); viz., 

W(z) = l? (z I - E)‘1 Q 

= 0.6321 0.4323 = 0.2 (z + 0.368) 
-1 - -2 

z-e z-e (z - 0.368) (z - 0.135) 

As a check on this, we calculate the Z transform of the system directly from 
Fig. 62 as foIIows. 

W(z) = z 1 
= ‘1-z-1’z[,(.2:,s+2)] 

= 1 z-1 0.5 z 

(- )[ - - (z -‘b-l) + (z”:Sef2)] (z - 1) 

= 0.2 (z + 0.368) 
(z - 0.368) (z - 0.135) 
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3.5 OBSERVABILITY AND CONTROLLABILITY 

Much of the recent literature in control theory is based on the description of a 
given system by vector differential (or difference) equations. The classical approach, 
however, represents the physical system by transfer functions (i.e., the Laplace 
transforms of the differential equations relating the artplt to the input). There has 
always been the implicit assumption that these two methods are essentially the same 
and will yield identical results. Apparently, clear and rigorous demonstration of the 
fact that such an equivalence is true only under carefully stipulated conditions was 
first given by Kalman, (43) who introduced the concepts of controllabiliity snd observa- 
bility. Before proceeding with a formal development of these ideas, it is instructive 
to consider an example that illustrates the basic problem. 

. Consider the feedback control system shown in Fig. 63. An elementary calculation 
shows that 

V(s) _ s - 1 
u(s) s+5 

which indicates that the system is stable. However, notice that a pole and zero have 
been cancelled in the right-half plane. This operation, which appears theoretically 
valid, must be carefully examined, as we will show. 

Figure 63. Feedback Control System 
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If we now choose state variables as shown in Fig. 63, we may describe the sys- 
tem by the dynamic equations 

%l 
= -4x1+5x2-5u 

. =x +u 
x2 1 

V = x -x +u 
1 2 

or, equivalently, by 

ri: = Ax +Bu 

v = Cx+Du 

where 

A= -4 5 [ 1 1 0 
B = -5 [I 1 

C=l -1 c 1 D = 1 

The eigenvalues for the system matrix, A, are readily obtained; viz:, 

A, = -5 

x, = 1 

which indicates instability. 

It appears that in passing from the state variable to the transfer function approach, 
a vital feature of the system response has been lost. This transition is even more 
subtle (and hazardous) in the multidimensional case. In the analysis of sampled data 
systems, the problem of “hidden oscilIationsff(43) is of this general type. The above 
example shows that hidden oscillations may occur even in continuous-type systems. 

The basic questions to be dealt with in this section are the following: 

a. Under what conditions is it permissible to represent a given dynamical system by 
a matrix transfer function7 

b. Given a matrix transfer function, what is the equivalent dynamic system ? 
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In answering the above questions we shall invoke the concepts of observability and 
controllability, which will be developed ab initio. It will be shown that a disregard of 
the first question can lead to erroneous results; indeed, much of the extensive literature 
on multivariable control systems is suspect for this reason.(34-37) The second question 
is not at all trivial. It is very easy to underestimate or overestimate the order of a 
system from an examination of the matrix transfer function. Some examples later in 
this section will illustrate the difficulties encountered. 

We begin with some basic definitions and theorems. These will relate to the dy- 
namic system described by Eqs. (136) and (137), which are repeated here for convenience. 

i = Ax+Du ( 199) 

V = Cx+Du Gw 

The normal (or diagonal) form of these equations is given by 

i= hy+Pu (201) 

V = ry+Du c3w 

which are merely Eqs. (161) and (162) of Sec. 3.4.1. 

Definition 1: A system is said to be completely state-controllable if for any to, each 
initial state, x(to), can be transferred to any final state, x(tf), in a 
finite time, tf > to. 

The word “completely” is used here to conform to Kalman’s terminology. He 
defines the concept of a controllable state and uses the word “completely” to emphasize 
that every initial state is controllable. Since controllability is here defined as a pro- 
perty of the system, the word “completely” is somewhat redundant. Consequently, as 
used in this section, the words, “complete controllability (or observability)” will be 
used interchangeably with “controllability (or observability). ” 

Definition 2: A system is said to be completely outplt-controllable if for given to and 
t-f, my fi.al ama v(tfl f can be attained starting with arbitrary initial 
conditions in the system at t = to. 
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Definition 3 : An unforced system is said to be completely observable if, for given t0 
and tf, every state, x(to), can be determined from the knowledge of v(t) 
in the interval (to, tf). 

It is easy to show (31) that any system, S, may always be partitioned into four 
possible subsystems (shown in Fig. 64) as follows: 

a.. A system, SA, that is state-controllable and observable. 

b. A system, SB, each of whose normal coordinates are observable and uncontrollable. 

c. A system, SC;, each of whose normal coordinates are controllable and unobservable. 

d. A system, SD, each of whose normal coordinates are uncontrollable and 
unobservable. 

According to this decomposition, the only subsystem that has to do with the relation- 
ship of v to u is SA. The observable subsystem, SB, only adds a disturbance to the 
controlled part of the output. It is apparent that. any analysis that neglects subsystems, 
SB, SC, and SD will be erroneous and possibly catastrophic, especially if the state 
variables associated with these subsystems become large. 

Consider now the transfer function matrix for the system, S, of Eqs. (199) and 
(200). which is given by Eq. (165); viz. , 

Us) = C (I s - A)‘1 B+D 

= r(Is -A)+ P+D (203) 

With respect to this transfer function and its relation to system S as represented 
by its partitioned subsystems, the following theorem is of fundamental importance. 

Theorem I (Kalman-Gilbert): The transfer function matrix, L(s), represents, SA, the 
state-controllable and observable subsystem of S. 

An immediate consequence of this theorem is that unless the system, S, is com- 
pletely state-controllable and observable (i.e. , S = SA), the transfer function matrix 
will not represent all the dynamic modes of the system. If any of these modes is un- 
stable, “hidden oscillations” will occur. 

It is important, therefore, to establish criteria for determining the controllability 
and observability of given dynamic systems. The following theorems serve this 
purpose. 
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SC 
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. 

Figure 6% Partition of Dynamic System 
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Theorem II: The system, S, represented by Eqs. (199) and (ZOq, is completely 
output-controllable if, and only if, the composite q x (n+l) p matrix 

[ 
. 

CB$&&&..... icAnml~i D . . . . . . . . 1 
is of rankq. 

For complete state controllability, the above matrix, with C = I and D = 0, must 
be of rankn. 

Theorem III: The system, S, represented by Eqs. (199) and (200) is completely 
observable if the composite n x nq matrix 

i T@‘l) 
iA C 

T 

. 1 
is of rank n. 

If the eigenvalues of the system matrix, A, are distinct, then the following theorem 
due to Gilbert(3I) is perhaps simpler to apply. 

Theorem IV: Let the system, S, be represented by its normal form, Eqs. (201) and 
(202). Assume that the eigenvalues of the system matrix, A, are distinct. Then the 
system, S, is completely state -controllable if P has no rows that are zero; it is also 
completely observable if l7 has no columns that are zero. 

Example 11: Consider the case introduced at the beginning of this section and shown in 
Fig. 63. 

We found that 

-4 5 
A= 10 [ 1 
c= l-l [ 1 
A, = -5 

B = -; [I 
D = 1 

n 2 = 

q=l A, = 1 
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Some simple compltations yield 

CB = 4 CAB = 30 

AB = “-; [I ATCT = -5 [3 5 

Substituting in the matrix of Theorem II, 

~B$A+], = [-B 30 1] 

=rankl=q 

which means that the system is completely output-controllable. 

However, 

E rankl<n 

so that the system is not completely state-controllable. 

Furthermore, 

bT;AT CT] = [-; -;] 

3 rankl<n 

so that by Theorem III, the system is not completely observable. 

To check these results by Theorem IV, we compute 

M=-; ; [ 1 e modal matrix for A 

M-l = $ -; ; [ 1 

c 

p = MBIB = ’ [I 0 
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r=CM= -6 -0 [ 1 
Since P has a zero row and r has a zero column, the system is neither completely 

state-controllable or observable. 

We would expect, therefore, that the transfer function calculated by Eq. (203) 
would not contain all the dynamic modes of the system. We obtain, in fact, 

6 s-l = --++ =- 
s+5 s+5 

Us) = r (I s - A)‘1 P + D 

1 [I 0 
+1 

Example 12: The system considered is described by Eqs. (199) and (200), with 

c=-2 10 
[ 1 

We readily compute 

A, = -1 

x2 = -3 

A, = 2 

1 -1 0.5 0.5 

M= 1 1 -1.5 2 1 1 I -0.25 

D=O 
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0.625 

P =M B=s -1 
30 .“*75 [ I 0.50 

r = CM = 
C 
3 -2.5 0 1 

Therefore, according to Theorem IV, the system is completely state-controllable, 
since P has no zero rows; however, it is not completely observable, because there is 
a zero column in r. We would therefore expect the transfer function, L(s), to have 
order two instead of three. A straightforward computation shcnvs that 

L(s) = r(h 4)-h 

= C 3 -2.5 0 . 

I[ 
‘0.625 

0.75 

.0.50 _ I 8 
30 

1 
= (8 + 1) (a + 3) 

The transfer function does not contain the unstable mode corresponding to the 
eigenvalue equal to 2. 

Checking for the controllability and observability of large complex systems may be 
quite tedious. The use of the following three theorems (31) reduces the workload some- 
what. 

Theorem V: Let the parallel connection of systems Sl and S2 form a composite sys- 
tem, S. (See Fig. 65.) Then a necessary aml sufficient condition that S be completely 
state-controllable (observable) is that both Sl and S2 be completely state-controllable 
(observable). 
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Figure 65. Parallel Connection of Two Systems 

Theorem VI: Let the series connection of system S1 followed by S2 form a composite 
system, S. (See Fig. 66. ) Then a necessary (though not sufficient) condition for the 
complete state controllability (observability) of S is that both S1 and S2 be completely 
state-controllable (observable). 

Figure 66.) Series Connection of Two Systems 

If S1 and S2 are both completely state-controllable (observable), any uncontrollable 
(unobservable) coordinates of S must originate, when designated according to eigenvalue, 
in S2 (Sl). 

Theorem VII: Let S1 and S2 be the systems in the forward and return paths respectively 
of a feedback system, S. (See Fig. 67;) Let SC denote the series connection of Sl fol- 
lowed by S2. Also, let the series connection of S2 followed by S1 be denoted by So. 
Then a necessary and sufficient condition that S be completely state-controllable (ob- 
servable) is that Sc (So) be completely state-controllable (observable). 

Furthermore, if S2 is static (i.e. , contains only pure gain elements), S is com- 
pletely state-controllable and observable if Sl is completely state-controllable and 
observable. 
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Figure 67. Feedback Connection of Two Systems 

Theorem VII is important because closed-loop controllability and observability can 
be ascertained from the open-loop systems, SC and So. Thus, one is not forced to deal 
with intricate closed-loop equations. 

The discussion thus far has been limited to continuous-type systems. Extensions 
to the discrete time case have been made by Kalman(41) and Sarachik and Kreindler. (40) 
The definitions and theorems that follow relate to the discrete time system described by 
Eqs. (173) and 174)) which are repeated here. 

Xk+l = Gxk+H “k 

Vk = CXk+DUk 

For this case, the relevant sampled data matrix transfer function is given by Eq. 
(193) or Eq. (198); viz., 

W(z) = C (z I - G)-1 H+D 

= r (z I - E)-1 Q + D (206 1 

Definitions 1, 2, and 3 for complete state controllability, complete output con- 
trollability, and complete observability carry over completely to the discrete time 
case, with obvious minor modifications. 

Also, Theorem II holds for the discrete time case if the test matrix is replaced by . . 
. . . . ..iCGn-‘H.D (207 1 . . . . 1 
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Similarly, Theorem III is valid for the discrete time case if the test matrix is 
replaced by 

[ 

CT iG~CT i i 
. . . . . . . . . . . :G 

T@‘l) CT 

. . . 1 (208) 

. . . 
In other words, Theorems II and III are true for discrete time systems of the type 

described by Eqs. (204) and (205), if A is replaced by G, and B is replaced by H. 

A natural question presents itself at this point. Suppose that the system repre- 
sented by Eqs. (199) and (200) is completely state-controllable and observable. How 
are these properties affected by the introduction of sampling ? An answer to this 
question is contained in the following.(41) 

Theorem VIII: Suppose that the system, (199) and (200), is completely state-controllable 
and observable in the absence of sampling. Then, if u(t) is constant over each sampling 
interval, 7, a sufficient condition for the complete state controllability and observability 
of the sampled system is 

Im($ -x1) f F 

whenever 

R e(Xi -Xj) = 0 

whereXiandXjareeigenvaluesofA, andm=*1,&2, l .=*. 

If u(t) is a scalar, this condition is necessary as well. 

Example 13: Consider the system, (199) and (200), where 

B= 0 [I 7T 

c=p 1 o] 

D = 0 
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It is assumed that u(t) satisfies Eq. (169). In this case, we may represent the 
system in the discrete time form, (204) aad (205), proceeding as fallows. 

1x1-Al = 0 

A, = -Y 

A, = -a +jn 

A, = -a-jn 

0 

1 

1 0 -(a - I n) 

2jn 

M -l =- 1 

[ 

0 
2js 

0 

1 

P = -0.5 j [ I 0.5 j 

r=[1 i I] 

0 - 

1 

-(a + j q 

0 

(a +M) 

-(a - j v) 

1 1 
0 

1 

-1 1 

Taking T = 1, we find that the only nonzero components of a(7) are 

Qll(l) = eey 

Q22(1) = -e-O! 

@33(1) = -CF 

which means that 

0 - 

0 

-e-g 

169 



while 

H= 

-1 
i;(l-e’) 

7r (e-Q - 1) 

tY2 +7T2 

0 - 

I 

- 

Hl 

H2 

D I 

1 

r 
y (1 - e-Y) 

I 
1 

Q=m 7r (a + j n) (e’” - 1) 

tY2 +r2 

L( 1 

a -a + jr) (e-a - 1) 

Or2 +*2 

Using Theorem IV for the continuous system we find that the system is completely 
state-controllable and completely observable, since P has no zero rows and r has no 
zero columns. 

However, by applying Theorem II to the discrete time system, we find 

1 
= 

e-y Hl ee2y H1 

-e-Or H2 e-2a H 2 
0 0 1 

which is of rank 2 (< n=3), so that the discrete time system is not completely state- 
controllable. Furthermore, using the discrete time version of Theorem III, 

i GTCT i GT2CT 
. . . . 1 . . 

1 e-y e+Y 

= [ I 1 -e-Q .-2fY 

0 0 0 

which is also of rank 2. Therefore, the discrete time system is not completely 
observable. 

The same result could have been obtained directly from Theorem VIII, since 

Im(X2 -X3) = 2a 
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when Re (A2 -x3) = 0. 

As a result of this analysis, we would expect that the Z transform of the system 
would not contain aII the dynamic modes. In fact we find, from Eq. (XJ~), 

W(z) = I’ (z I - E)-1 Q 

=[l 1 1] 1 

2 -e Xl 
0 0 

0 1 - 
2 -e x2 

0 

0 
1 

0 - 
x3 2 -e 

2VjH 
1 

@+jn)H 2 

(-01+jf9H2 

1 

ZlTj 

= (1 -e-‘) + *(ema+ 1) 

Y (z - e?) (a2 + 7r2)(z + ema) 

As a check on this, we may calculate the Z transform from the schematic repre- 
sentation of the system shown in Fig. 68. From this we obtain the system transfer 
function as 

p& = l-Z8 1 ; [ I[ a 
S s+Y (s +a) 

2 2 
+fr 1 

u(t) 
Sample 

* and 
Hold 

Figure 68. Schematic of System of Example 13 
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Taking the Z transform, we find 

(2 - 1) 
W(z) = -y 

I ( 

1 - e-’ 
3 

Y (z - 1) (z - e -YT) + (a2:,s [ti 

2 -017 
Z -ze set 8 co6 (n 7 - t3) 

2 
- 2 z 

emaT -2tYr 
Z cosfrr +e It 

where 

For 7 = 1, this reduces to the value of W(z) obtained above. 

Inspection of the G matrix for this example indicates that there are three modes: 
one corresponding to the eigenvslue, pl = e-7; and the other two corresponding to the 
multiple eigenvalue (of order 2), ~2 = -e -01. In the Z transform, W(z), only asingle, 
rather than a multiple, eigenvalue is apparent for -e’O1. This is because the ob- 
servability and controllability conditions are not satisfied. Furthermore, this is pre- 
cisely the reason why some sampled data systems exhibit the phenomenon of “hidden 
oscillations. ” 

We now turn our attention to the second main problem posed at the beginning of 
this section: “Given a matrix transfer function, what- is the equivalent dynamic system ?‘I 

It should be pointed out, to begin with, that the state space representation for a 
given transfer function is not unique, because the choice of state variables is, to some 
degree, arbitrary. However, the differential equation representation is unique (assum- 
ing zero initial conditions) if the system is controllable and observable. In this case, 
it can always be reduced to an appropriate state variable form. However, in some 
cases, a pole and zero of the system may cancel, in which case the transfer function 
will not represent the actual system and hidden oscillations may occur. Furthermore, 
if the system is not controllable, it cannot be reduced to phase-variable form, and 
some of the transformation matrices will be singular. 

To provide some motivation for the following discussion, consider the matrix 
transfer function 
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(209) 

This may be written in the form of a partial fraction expansion as follows 

2 K. 
L(s) = ($- c 

i=l - s$ 

where Kf is the ith residue matrix given by 

Ki 
= lim 

[I (8 - q Us) 
s-q 1 

and the sf are the poles of the matrix elements in L(s). For the special case of Eq. 
(209), we have 

s1 = -1 s2 = -2 

and 

K = 
1 2 

1 [ 1 -1 0 0 0 
K=ll 2 [ 1 (210) 

Consequently, it would appear that the weighting function matrix corresponding to 
L(s) is 

2 [ 1 Us) = Kle “It + K2 e “zf 

which implies that the dynamic system corresponding to L(s), given by (209), is of 
second order. It will be shown later that L(s) actually corresponds to a third-order 
system. 

A method for constructing the state variable representation of a given matrix 
transfer function of correct order is contained in the following important theorem due 
to Gilbert. (31) 
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Theorem M: Given a rational matrix transfer function, L(s), whose elements have 
a finite number of simple poles, Si* i=1,2, l l l l ,m. Let the partial fraction expansion 
of L(s) be 

Us) = 
m 

c 
i=l 

Ki +D 
s-s 

i 
(211) 

where 

Ki = lim 
[ 
(6 - si) L(s) 

3 
W2) 

s-‘s. 
1 

D = lim L(s) (213) 
S-rW 

Let the rank of matrix Kf be denoted by ri. Then L(s) can be represented by a 
system of differential equations (199) and (200) or (201) and (202) whose order is 

m 
n = c 1. 

i=l ’ 
(214) 

Applying this theorem to the matrix transfer function given by Eq. (209), we note 
that since the corresponding residue matrices, K1 and K2, given by (210), have rank 2 
and 1 respectively, the corresponding system is third order. 

It is apparent from Theorem M that the system order, n, is equal to the number 
of distinct poles, m, in the elements of L(s) only when the rank of every Ki matrix 
is one. The partial fraction expansion given by Eqs. (167) and (168) for L(s) in the 
special form, (165)) ensures that the resulting Ki all have rank one. In general, 
however, L(s) is in some aribtrary form as a result of compensation and design manip- 
ulation. In this case, Theorem M must be used to check the correct order of the 
system. 

(31’) 
Gilbert. has also given a constructive procedure for determining the state vsri- 

able representation from the matrix transfer function. This may be summarized as 
follows. 

Since -i$ is of rank ri, there are ri linearly independent columns in Ki. Form a 
matrix, pi, consisting of these ri linearly independent columns. We may then write 

Ki = Pi Bi 
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where Bi is to be determined. A simple manipuIa.tlon shows that* 

B, = PiT Pi -‘PIT Ki 
( > 

(216) 

The correspcnding state variable representation is given by Eqs. (201) and (202), 
where 

x1 5 
A= 

[ 
0 

x2 I2 =. 0. 
.“.X 1 

mm 

01 B .2 
P= i 

[1 8, 

r= 
[ P, P2 l **- Pm 1 

(217) 

(218) 

(219) 

Ii = unit matrix of order ri 

and Xi = s.. 1 

gate that Xi is an eigenvalue of multiplicity ri and that the order of the system is 
n=z r.. 

i=l l 

Example 14: Given the matrix transfer function shown in Fig. 69, seek to derive the 
corresponding differential equation representation. In the absence of a sound sys- 
tematic procedure, it would be a formidable task to obtain the equivalent state variable 
representation of correct order. Using the method outlined above, the procedure is 
quite straightforward. The poles of the elements in L(s) are obtained by inspection; 

. VIZ., 

s1 = -1 

s2 = 
-2 

tThe matrix, <piT pi), is nonsingular, since Gram determinant 1 piT piI is nonzero if 
the columns of pi are linearly independent. 
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3 (8 + 3 ) (s + 5) 
(s + 1) (6 + 2) (s + 4) 

6 (s + 1) 
(s + 2) (9 + 4) 

2s +7 
(8 + 3) (s +4) 

L(s) = 
2 

(9 + 3) (s + 5) 
1 

@ + 3) 

L 2 (s2 + 7s + 18) . -2s (8 + 1) (s + 3) (s + 5) (s + 1) (8 + 3) 

2 (s - 5) 
(s + 1) (8 + 2) (s + 3) 

1 

@ + 3) 
2 i5s2 +27s +341 I 

(8 + 1) (s + 3) (8 + 5) 
I 

Figure 69. Matrix Transfer Function for Example 14 



s3 = -3 

“4 
=-4 

s4 = -5 

Consequently, from Eq. (212), 

K1 
= lim 

[ 
(8 - Sl) Us) 

s+ Sl 3 

This is obviously of rank 3, so that 

From Eq. 216 we find 

In similar fashion, we obtain 

-3 0 1 

0 -6 0 

0 00 I = rank2 
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-3 0 

p2= i 0 0 -6 1 0 

K3 = 

01 

P3 = [ 1 12 

-3 1 

K4 = 

P4 = 

-0.5 9 1 

0 0 0 0 =rankl 

0 0 0 0 1 0 

'1 

.I 0 

0 

p, = co.5 9 1 o] 

K5 = 

000 0 

-1 0 0 -3 

200 6 

1 [ 

d 

p, = -1 

2 . 

I =rankl 
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85 
=lO 0 

[ 
3 1 

Using Eqs. (217) - (219), we find 

0- 

-212 

A= -312 

-5 
-51 

1 

8 0 0 -3 0 

r= 004 o* 

3 10 0 0 

P= 

i 0 0 0 - 

0 1 0 3 

0 0 1 0.25 

~1.5 1 0 0.333 

0 010 

1100 

0 011 

0.5 9 1 0 

1 0 0 3 _ 

0 11 0 

1 2 0 -1 

-3 1 0 2 

The system is obviau3ly of order nine, with 

s1 = xl = 
-1 = pole of arder three 

s2 = x2 = 
-2 q pole of order two 

.a =A = 

3 3 
-3 E po+eofordertwo 

“4 = x4 = 
-4 E simple pole 

s5 = x5 = 
-5 E simple pole 
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Having A, P, and I?, the state variable form is given directly by Eqe. (201) and 
(202). That the input vector, u(t), is of dimension four is not apparent from inspection 
of the given L(s). 

3.6 THE INVARIANCE PRINCIPLE 

In virtually every realistic control system, the controlled variable is sensitive to 
some tspe of external disturbance. Assuming that only one external disturbance is 
significant, the design of a feedback control system reduces to that of determining the 
transfer functions 

C(s) - 
R(s) TR(s) (220) 

(221) 

where 

R(s) P Laplace transform of reference input 

D(s) = Laplace transform of disturbance input 

C(s) q Laplace transform of controlled variable. 

For purposes of obtaining independent control of TR(s) and TD(s), two separate 
compensation networks are required (the so-called “two-degree-of-freedom” system). 

For definiteness, consider the control system shown in Fig. 70. Here G2(s) re- 
presents the transfer function of the fixed plant, and Gl(s) and H(s) are compensation 
networks that are to be designed such that the transfer functions of Eqs. (220) and (221) 
are realized. It is immediately evident from Fig. 70 that 

C(s) - GIW G2W 
-- 
W) 1 + G+s) G2W H(s) 

= TR@) 

G2W 

1 + G1(B) G2W H(s) 

= 1 c(s) = Tu(s) [ 1 Gl@) R(s) 

(222) 

(223) 
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Figure 70. Two-Degree-of-Freedom Feedback Control System ’ 

It is apparent that a suitable choice of G2(s) and H(s) permits TR(s) and TD(s) to 
be realized independently. For example, Gl(s) may be selected from the requirement 

T (8) C(s) - R - - - = TD(s) 
D(s) G+s) 

H(s) may then be chosen such that (222) is satisfied. 

Ideally, one may require that TD(s) = 0. In principle, this may be achieved by 
Rutting Gl(s) = K, where K is theoretically infinite. Then, from Eq. (223), it follms 
that TV(s) m 0, while Eq. (222) reduces to TR(s) FS: l/H(s). 

In practice, in addition to the obviously unrealistic requirement for infinite open- 
loop gain, ,the above approach is severely limited by the fact that the compensation net- 
works often require an excess of zeros over poles, leading to intolerable problems of 
noise and physical realizability. However, this technique is useful and feasible when 
reasonable constraints are placed on the TR(s) and TD(s) transfer functions. Various 
schemes based on these ideas are treated in the literature. (l* 46’ 47) 

In this section, we will canaider a slightly different approach to the problem of 
making a control system insensitive to external disturbances. This concept, which 
was originated and developed to a high degree by Russian scientists, has been termed 
the “Invariance Principle. ‘I The present exposition leans heavily on a survey paper 
by Preminger and Rootenberg, @) which also contains extensive references to the 
Russian literature. 

The basic idea is extremely simple. Suppose that the transfer function relating the 
controlled variable to sn external disturbance is given by 
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C (8) = B (s) 
D (8) A (8) 

where A (s) and B (s) are polynomials in s. 

We say that there is "absolute invariance" relative to c (t) if 

B (s) = 0 for d (t) f 0 

A system has ffconditional invariance" relative to c (t) if 

B (s) D (s) = 0 when B (s) f 0 

(224) 

(225) 

(226) 

and d(t)+0 

Obviously, conditional invariance is dependent on the form of the disturbance. 
In this case, absolute invariance is realized for only one form of disturbance. 

One may also have "steady-state invariance" relative to c (t), a condition 
that occurs when the influence of d (t) on the steady-state value of c (t) is 
cancelled. This situation is realized by eeroing certain coefficients in the 
B (s) polynomial. For example, by zeroing the constant term in B (s), one 
obtains a zero steady-state error in response to step disturbances. By zeroing 
other coefficients in B (s), steady-state invariance for other types of 
disturbances may be achieved. 

The essential premise in the principle of invariance is that the disturbance 
itself is used to generate a signal that will cancel the influence of the 
disturbance on the controlled variable. To make these ideas precise, consider 
the system shown schematically in Fig. 71. A simple calculation shows that 

; :“sf = Gq (8) L1 (8) - LP ($1 G1 (8) (227) 

Therefore, in order to achieve absolute invariance, the transfer function, 
Lp (8) 9 must be 

Ll (8) 
9 (8) = m(S) (228) 

By suitable design of L2 (s), conditional or steady-state invariance can 
al80 be achieved. 

The problem8 of stability or dynamic behavior of the system are not relevant 
for cases in which absolute invariance is realized, since no transients appear 
at all with 
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Figure 71. Absolute Invariance Via Additional Path From Disturbance 

changes in the disturbance. Transients will appear in systems with only conditional 
or steady-state invariance, but the additional path from the disturbance does not affect 
stability of the controlled system, provided elements G2(s), Ll(s), G1(s), and L2(s) 
are all stable. 

In some cases, it is simpler to sense a variable that is dependent on the disturbance 
rather then sensing the disturbance itself. Consider, for example, the system indicated 
schematically in Fig. 72, where the multiple input-output block represents the matrix 
equation 

(229) 

Here, one feeds back Y(s), which is dependent on D(s), rather than providing a 
feedback loop from D(s) directly. It is readily determined that for this case, 

pJ _ G2$3) + Gl@) Us) 4s) G2p - G#) f322@) 1 D(s) - 1 + G12ts) GIW Us) 
Consequently, in order to realize absolute invariance, we must have 

L(s) = 
G2 1ts) 

llts) ‘322@) - Guts) GZl@ 

(230) 

(231) 
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Figure 72. Variance Via an Additional Path From an Internal Variable 

In contrast to the previous case, wherein the disturbance signal was fed back 
directly, the use of a disturbance-dependent variable as an added loop definitely af- 
fects system stability. 

From the sensitivity point of view, transfer functions GZl(s) and G12(s) behave 
open-loop with regard to parameter (48) variations. !However , sensitivity to parameter 
variation in G1l(s), G22(s), GI(s), and L(s) is reduced, because these systems behave 
“closed-loop” in this respect. Nevertheless, parameter variations anywhere in the 
system affect the invariance condition adversely. 

While the use of the invariance principle is theoretically attractive, its practical 
application is limited by four main problems: 

a. The requirement for differentiating networks in the feedback path from the disturb- 
ance or disturbance-dependent variable. 

b. The extreme sensitivity of the system to parameter changes. 

c . The lack of accurate instrumentation to sense the disturbance. 

d. The appearance of additionsl disturbsnces, apart from the one for which the sys- 
tem was originally designed. 

In spite of these difficulties, a substantial improvement in performance quality 
can be obtained if invariance is employed in conjunction with a feedback system. Fig. 
73 shows a feedback system that incorporates a path from the disturbance directly. 
Fig. 74 shows the use of an additional loop from a disturbance-dependent variable. The 
main advantage in using invariance with a feedback system is the reduced sensitivity to 
parameter variations. While in practice it is not feasible to achieve a theoretically 
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Figure 73. Feedback System with Absolute Invariance Via Disturbance Feedback 

Figure 74. Feedback System with Absolute Invariance Via Disturbance-Dependent 
Variable Network 
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exact absolute invariance, it is possible to design highquality control systems that have 
a high degree of “approximate invariance. ” 

In the case of direct disturbance feedback, as illustrated in Fig. 73, stability is 
not affected by the additional path.? Here we find that 

C(s) - G2(s) C L+s) - L2@) GIW 3 
D(s) 1 + G1@) G2W H(s) 

which means that for absolute invariance, we must have 

LIW 
L2(s) = - 

G+s) 

(233) 

(233) 

One of the main difficulties encountered in this case is the difficulty of sensing 
D(s) accurately. 

If we use the disturbance~ependent variable feedback as shown in Fig. 74, then 

C(s) GZ1(S) - G+s) Us) G12(s) G2+s) - Gil(s) G22(s - [ 
D(s) 1 + G+s) G12W Us) + G22(~) H(s) 

The condition for absolute invariance becomes 

L(s) = 
GZIW 

12W G2+s) - Gilts) G22(s 

(234) 

(235) 

It is tempting to investigate the possible application of the invariance principle to 
launch vehicle autopilots, where Wind gusts take the role of external disturbances. The 
simplified equations, obtained from Appendix A, are as follows. 

mU (dc’ -8) = Tc6-La” (336) 

ii = p,d+p,ff (337) 

a = 01’ +cy 
W (338) 

t Provided, of course, that L2(s) is stable. 
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6 
C 

d+Kc6 = K 6 
c c (241) 

Quantitya!w represents the external wM gust; i.e., it is the ratio of wind velocity 
normal to the vehicle to vehicle forward velocity. It is generally not feasible to meas- 
ure OL w directly. Hclwever, an accelerometer can sense i , which is therefore a 
measure of 0~’ (assuming U is constant). Consequently, we will take 0~’ as the disturb- 
ance-dependent variable. 

With reference to Fig. 74, we identify the notation of the present problem as 
follows. 

R(s) = et(s) 

C(s) = B(s) 

X(s) = b(s) 

Y(s) = d(s) 

D(s) = a’,(s) 

Also 

K K 
GIW = ,“+ Kc 

C 
(242) 

H(s) = KR s + 1 (243) 

Eliminating a! from Eqs. (236) and (237) via Eq. (238), we obtain, after some 
reduction, 

(244) 
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where 

G12(s) = 

G2+s) = CLbr 

- %! > 

G22W = 

(245) 

(246) 

(247) 

(248) 

Absolute invariance of 9 with respect to Q w is assured if L(s) satisfies Eq. (235). 
In the present case, using Eqs. (245) - (248), this reduces to 

(249) 

The result thus obtained, while theoretically attractive, suffers from obvious 
practical limitations. The zeros in the numerator of L(s) introduce serious problems 
of noise and physical realizability. Furthermore, a simplified mathematical model of 
the actual vehicle was used to obtain the result, and it may be expected that a more 
complete representation of the vehicle would introduce substantial complexities. 
Finally, the actual vehicle parameters are time-varying, and this would tend to vitiate 
the invariance properties. 

However, one succinct feature of the compensating network, L(s), is quite apparent: 
the need to cancel the actuator dynamics and use a precisely defined gain in the network. 
The use of acceieration feedback for purposes of load reduction is, of course, not new. 
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Nevertheless, the present approach to the problem is novel, aud it would appear that 
attempting to achieve a kind of approxfmate invariance in the manner outlined would 
be worthwhile. To OUT kncnvledge , no investigation along these lines has been made. 

The discussions thus far have been in terms of system transfer functions, a pro- 
cedure that has the virtue of familiarity, since United States control engineers have 
traditionally used this approach. Much of the Russian literature on the invariance 
principle is, however, expressed in the state variable format, leading to results that 
are sometimes more convenient for special purposes. 

We may formulate one type of invariance problem as follows. Suppose we are 
given the system 

ri = Ax+fu 

V = cx 

(250) 

(251) 

which is expressed in the state variable format of Sec. 3.4; i. e . , 

x = n dimensional state vector 

u 5 input; a scalar 

v 5 n dimensional output vector 

A E n x n (constant) matrix 

f I n dimensional (constant) vector 

C E n dimensional (constant) row vector 

What are the conditions that ensure that v is absolutely invariant with respect to 
u ? This problem has been solved by Rozenoer , (45) who showed that a necessary and 
sufficient condition for this invariance is that the relations? 

CTAkf = 0 

k = 1,2;**,(n-1) 

(252) 

be satisfied. 

This result is typical of those derived in the Russian literature, which nevertheless 
is of a mostly theoretical nature concerned with questions of existence and realizability. 

A simple application of the above result is contained in the following. 

tThe superscript T, as usual, denotes transpose, while k is an exponent. 
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Example 15: Consider a second-order version of the system, (250) and (251), with 

*/; 5 1 I a22 
f [I fl 

= 10 

c=2 1 L 1 
Parameters az2 and fl are to be determined such that v is absolutely invariant 

with respect to u. 

In the present case, condition (252) reduces to 

fl Cl + f2 c2 = 0 

fl 
( 
cl all + c2 a21 + f2 

) ( 
cl al2 + c2 a22 

> 
= 0 

Substituting numerical values, 

2 fl + 10 = 0 

fl(-6-4)+10(10+a22) = 0 

We find, therefore, 

fl = -5 

a22 = -15 

As a check on stability, we obtain, for the eigenvalues of A, 

A, = -5 

A2 
= -13 

which shows that the system is stable. 
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APPENDIX A 

A PITCH PLANE ATTITUDE CONTROL 

SYSTEM FOR A LAUNCH VEHICLE 

NOMENCLATURE 

IO 
= moment of inertia of reduced vehicle (i.e., excluding slosh masses) 

about pitch axis 

KA 
= servoamplifier gain 

KC 
= engine servo gain 

KI= integrator gain 

% 
= rate gyro gain 

1 = length parameter along vehicle; positive in aft direction 

a 
C 

= distance from origin of body axis system to engine swivel point 

a 
P 

= distance from origin of body axis system to accelerometer 

a 
R 

= distance from c.g. of rocket engine to engine swivel point 

a 
Pi 

= distance from origin of body axis system to ith slosh pendulum hinge 
point 

a 
a 

= distance from origin of body axis system to center of pressure 

L 
Pi 

= length of ith slosh pendulum 

La = aerodynamic load 

mO = reduced mass of vehicle = m T-Cm. 
i Pi 

mT 
= total mass of vehicle 

“Pi 
= mass of ith slosh pendulum 

YE2 
mass of rocket engine 
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Mi 
= generalized mass of ith bending mode 

q (i) = generalized coordinate of ith bending mode 

8 = Laplace operator 

t = time 

TC 
= control thrust 

U = bending deflection 

uO 
= forward velocity of vehicle 

w = normal velocity of vehicle 

cx = angle of attack 

CYT 
= thrust acceleration 

Y = flight path angle 

ri = angle of ith slosh pendulum 

6 = rocket engine deflection angle 

6 
C 

= command signal to rocket engine 

8 = attitude angle 

eE = error signal 

eF 
= feedback signal 

ec = command angle 

52 
= Tc ac/Io 

vi 
= m 01 /I 

pi T 0 

(i) = negative slope of 1 
a cp(i) 

0 4h bending mode = - r 

(o(i) = normalized mode shape function for ith bending mode 

5,) Oi; [R, CC-R; 5,, UC; t,,, Opi = relative damping factor and undamped 
natural frequency for: ith bending mode; 
rate gyro; engine actuator; i* slosh 
pendulum 
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The foIlwing equatians‘describe the motion of a launch vehicle in the pitch plane, 
using a cawentional autopilot. The uxxlerlying assumptions and limitations are die- 
cussedindeta5linRefs. 4to6. 

+ 25 0 s + to2 ,Q) 2 
i i i 

2 
C 

= Kcw26 
c c (A31 

eF (A41 

Note that this formulation provides for the possibility that the rate and position 
gyros are not placed at the same location along the vehicle. 

6 _KA(s+Ks G (,qe 
C 6 F E 

eE = 8 - 0, 
C 

mO(’ -+) = Tc6-Lor”+xm r.cr i pi 1 T 

L 
Pi ( 

s2+25 piwpis+c$.i = -(Ibuo~)+(lpi-Lpi)~ 

The elastic displacement is given by 

w3) 
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Accelerometer 

6 

y” 

\ 
Z 

Figure Al. Vehicle Geometry 
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Undeformed Elastic Axis 

Figure A2. Sign Convention for Bending Parameters 
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Figure A3. Pitch Plane Autopilot 



- 

while 

au - = -c (p(t) p (A) 
bc i 

where 

(AW 

(All) 

The vehicle geometry is depicted in Fig. Al, and the sign convention for bending 
parameters is shown in Fig. A2. Fig. A3 is a block diagram of the pitch plane auto- 
pilot; it is assumed here that only the lowest bending mode is significant. 

The complete set of equations (Al) - (A8) is too formidable for pencil-and-paper 
analysis. By introducing appropriate simplifications, the various essential features 
of the control system are placed in evidence. Ultimately, a simulation of the complete 
system via computer serves merely to refine the results obtained via the approximate 
analysis. 

We assume first that perturbations in flight path angle are negligible. This enables 
us to write 

Furthermore, it is assumed that the rate and position gyros are located sufficiently 
close together that 

w 
aPG 

0) 
- uRG (A121 

If sloshing is neglected and only the lowest bending mode is considered, we find 

2 _ j$ (I -A$ (s2 +25; wRs +d(s2 +cl s +c,>(.z +e2) [ 1 a2 (A13) 

where 

. 
(1) T 

Al = 
OG c 

% 5 
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a;+~ A 
a 1 

'0 = l-Al 

2%wl 
‘1 = l-A 

1 

92 TC = 

?R ‘R 

The quantity (s2 + 2S;, 0~ s + 4) may be factored as follows 

(Al51 

(AW 

(Al71 

2 
8 +2qip+uR 2 = q,s+l)(TRS+l) 

where 

In the range of values usually considered (q, > 120), TR is negligibly small, while 

Consequently, 



- 

Therefore, 

s2+2~;WRs+w 2 = K&qs++) 
R 

From Eqs. (A3) and (A5), we have 

5 -= 

eE 

Combining (A13), (A19), and (A20) yields 

t1 - Al) N(s) 1 Do 

(A19). 

WW 

WV 

where 

N(s) = ~+~)~+~)(s2+~ls+co)(s2+~2)GF(s) 

D(s) = s(s2-P~)(s3+2~c~cs2+~~s+Kc4(s2+25R~s 

2 
>( 

s2+251wls+w 
2 

+0 
R 1 > 

The open-loop transfer function of Eq. (A21) is in a form that permits the use of 
either root locus or frequency-response methods for stability analysis. This transfer 
function may be further simplified in various ways. For example, OR, # , and oc are 
generally quite large compared to the dominant or control frequencies. Therefore, a 
transfer function valid in the low-frequency range is given by 

eF 
(s+,)(s+~)(s~+cls+co) 

-=IKAKc~pc(l-AJl s,&&p)~+K)(s2+25 o s+u3 (A22) 8, 
c! C 1 1 1 

where it has been assumed that GF(s) = 1. 
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The influence of bending is negligible if 01 is large or if $) M 0. In this case, 

eF 

-= KAKcI(Rpc eE 

With the inclusion of a simple lag filter in the loop, this becomes 

eF KK uc A c 

s 
-= 

eE [ 1 7 

lf it further assumed that 

( r) s+ 
- wl 

S 

(in other words, KI is very nearly zero), then 

KAKcKRcc(s+~) 

t- r(s”-j~~)(s+K~)(s+$) 

(A23) 

(A24) 

The simplest possible form of the open-loop transfer function is obtained by as- 

suming that Kc and t are large compared to the dominant time constants of the system; 
nz., 

eF -= 
eE 

(A25) 

This last form is useful mainly in determining crude order-of-magnitude estimates 
for the open-loop gains. 

Note that in all cases, for any one of Eqs. (A21) - (A25), the characteristic equation 
of the system is given by 

8 
F 1+J--- i 0 
E 
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APPENDIX B 

RELATIVE DAMPING FACTOR IN TERMS 

OF TCREBYCHEV POLYNOMIAIS 

Ut a point in the complex plane be described by 

S (Bl) 

This has the usual meaning where wis the undamped natural frequency and 1: is 
the relative damping factor. We form successive powers of s as follows. 

s2 = u2[(2r2-1)-2)r Jl-1 

s3 = w3 [(-4r3+3q+j(4c2- 1)J;-7] 

S4 =W - SC2 + l)+ j (-8c3 +41: ,JJ-1 1 -c2 

It is now observed that the sequence 

is precisely Tl (-c), T2 (-c), T (-c), T4 (-c), where Tk ( ) is the Tchebychev poly- 
nomial of the first kind of order 2. 

Furthermore, the sequence 

1 

-2 c 

(4r2 - 1) 

(8C3 +4C) 
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is simplyUl (-0, U2 (43, U3 (43, U4 (-OS where uk ( ) is the Tchebychev poly- 
nomial of the second kind of order k. 

This suggests the representation 

. Wk Tk (-p) + j Ji? uk (-c) 
I 

Making use of the standard relations 

Tk (-c) = (-I)~ Tk (c) 

Uk (-0 = (-l)k uk (c) 

we write this as 

(-i)k Wk Tk (c) - j m”k (c) 
I 

which is Eq. (32) of Sec. 3.1.2. We proceed to prove this by induction, 

Multiplying Eq. (B3) by Eq. (Bl) yields 

sk-+-l 

w 

W) 

Making use of the following relations for the Tchebychev polynomials 

Tk+2 (<) = 2 % Tk+l (5) - Tk’(c) 

uk+2 (p) = 2 c ‘k+l (c) - ‘k (‘I 

Tk+l (<) = c ‘k+l (c) - ‘k (C) 

206 



Eq. (334) reduces to 

k+l 
8 = Wk+’ wk” Tk+l (C) - j &%J,, (5, 

I 

Q.E.D. 

Consequently, if Eq. (B3) is substituted into’the polynomial 

m 
f(s) = c k 

k=o aks 

the latter becomes 

!l%is result was apparently first obtained by Siljak,(15) though in a somewhat more 
cumbersome manner than that given here. 
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APPENDIX C 

A NOTE ON LAPLACE TRANSFORMS 

Most pedagogic expositions of the Laplace transform begin with the definition 

m 
c g(t) [ 1 1 G(s) = e’& g(t) d t (Cl) 

following which the elegant means of solving linear time-invariant differential equations 
via (Cl) are demonstrated. However, since no motivation is given for choosing the 
peculiar form of Eq. (Cl) to begin with, the procedure has the air of some esoteric 
ritual being conducted by a sorcerer. 

We will attempt therefore, in what follows, to show that the function defined by 
(Cl) arises quite naturally when one seeks to solve a linear differential equation in a 
somewhat unconventional fashion. (Xu line of departure is, of course, the original 
route taken by Laplace almost 200 years ago -- a route that has been almost completely 
submerged by the mathematical refinements developed subsequently. 

The equation to be solved is 

n 

Ti is 
ai Di x = f(t) 

where the 3 are known constants and Di is the linear operator defined by 

D”x = 1 

Di x q dix 

dti 

i = l,?,=**=n 

and the initial conditions are given as 

xO 
= x(0) 

dx 

x1 
E- I dt t=O 
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t=o 
; . . . n-l d x 

X E- 
n-l dt 

n-l 1 t=o 
We may also write Eq. (C2) as 

cp (W X = f(t) 
where 

D 
n-l 

+ l .e... 

n-l 
+alD1+a 

w 
Co&d) 

(C5) 

W6) 

It is known from the elementary theory of differential equations that the solution of 
(C2) involves terms of the form emst. As a first step, therefore, let us investigate the 
properties of the equation that results from multiplying (C2) by emst and integrating 
from zero to infinity; viz., 

n i co CD 
e -& !?$dt = e 

dt’ 
-& f(t) d t (C7) 

Here we assume that s is a positive real constant. In the more general theory, 
s is allowed to be complex, but for present purposes this is neither necessary nor 
desirable. With s taken as real, all the usual results are derived with a minimum of 
effort; at the same time, some of the mathematical subtleties connected with complex 
s are bypassed. 

Analyzing the terms on the left-hand side of (CT) sequentially, we have, to begin 
with, 

J 
CD 

-st dx 
e 

0 
z dt = [e-stx];‘s~~e-stxdt 

via integration by parts. If we assume that 

-st lim e x = 0 [ I 
t4= 

(‘33) 
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then the above reduces to 

m 

J 
e-st dx zdt = -x0+8 

0 
-st xdt 

Similarly, 

J 

m 
-st d2 x 

e 
0 

- dt = [eBst $1; + sl-e-st g dt 
dt2 

Assuming that 

-st dx 

t-- 
K =o 

I 

and using Eq. (CS), this reduces to 

m 
-st d2 x 

e -dt =-(x1 +sxo)+s2~we-stxdt 
dt2 

In similar fashion, we find that, in general, 

m 

J 

-st dr x 
e - 

0 dtr 

co 
-st 

e x dt 

under the assumption that. 

i = 0,1,2==..,n-1 

WV 

(CW 

Gil) 

(C12) 

(Cl3) 

For simplicity, assume that all the initial conditions are zero, i.e. , 

x. = 0 
1 

for i = 0,1,2;***,n-1 
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Then, in place of (C5), we have 

Q) 
-st xdt = f(t) dt 

Now by using definition (Cl), we may write this as 

X(s) = F(s) 
cp(s) 

with the result that 

x(t) = E-l [X(s)] = eyqy 

(Cl41 

(Cl51 

(CW 

Consequently, the solution of the given equation is expressed in terms of the in- 
verse form of (C 1) , requiring only that one tabulate a suitable set of paired functions, 
g(t)uG(s) , in order to write the solution virtually by inspection. 

For example, if (C15) is written as 

n 
F(s!= 

A 
X(s) = c 

1 
<P(‘) i=l ’ - ‘i 

then it is sufficient to note that 

X’[Aiesit] = Ai ~~e-stesit dt = * 

from which the solution may be written directly. 
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